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A B S T R A C T

Objective: The majority of cancer patients suffer from severe pain at the advanced stage of their illness. In
most cases, cancer pain is underestimated by clinical staff and is not properly managed until it reaches a
critical stage. Therefore, detecting and addressing cancer pain early can potentially improve the quality of life
of cancer patients.

The objective of this research project was to develop a generalizable Natural Language Processing (NLP)
pipeline to find and classify physician-reported pain in the radiation oncology consultation notes of cancer
patients with bone metastases.
Materials and Methods: The texts of 1249 publicly-available hospital discharge notes in the i2b2 database
were used as a training and validation set. The MetaMap and NegEx algorithms were implemented for medical
terms extraction. Sets of NLP rules were developed to score pain terms in each note. By averaging pain scores,
each note was assigned to one of the three verbally-declared pain (VDP) labels, including no pain, pain, and no
mention of pain. Without further training, the generalizability of our pipeline in scoring individual pain terms
was tested independently using 30 hospital discharge notes from the MIMIC-III database and 30 consultation
notes of cancer patients with bone metastasis from our institution’s radiation oncology electronic health record.
Finally, 150 notes from our institution were used to assess the pipeline’s performance at assigning VDP.
Results: Our NLP pipeline successfully detected and quantified pain in the i2b2 summary notes with 93%
overall precision and 92% overall recall. Testing on the MIMIC-III database achieved precision and recall of
91% and 86% respectively. The pipeline successfully detected pain with 89% precision and 82% recall on our
institutional radiation oncology corpus. Finally, our pipeline assigned a VDP to each note in our institutional
corpus with 84% and 82% precision and recall, respectively.
Conclusion: Our NLP pipeline enables the detection and classification of physician-reported pain in our
radiation oncology corpus. This portable and ready-to-use pipeline can be used to automatically extract and
classify physician-reported pain from clinical notes where the pain is not otherwise documented through
structured data entry.
1. Introduction

Two-thirds of cancer patients with advanced metastatic disease
experience pain [1], and nearly 50% of these patients identify pain as a
significant problem that deteriorates their quality of life [2,3]. Pain can
also induce stress that may suppress the immune system. For instance,
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it has been demonstrated that pain in metastatic patients can suppress
the natural killer cells that control tumor growth and metastasis [4].
Because of these issues, several organizations such as the World Health
Organization (WHO) and the American Pain Society recommend that
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physicians properly document pain in Electronic Health Records (EHRs)
to facilitate best practice pain management, follow up, and quality
assurance [1,5–7].

Consultation notes in EHRs represent a wealth of useful information
on patients’ health and outcomes. But, due to their largely unstructured
nature and typically non-standardized formatting, extracting useful
information from these unstructured free-text documents efficiently,
is a challenging task [8]. This may result in consultation notes being
ignored or not optimally used in clinical cancer management and
outcomes research.

One potential approach to meet this challenge is to adopt Natural
Language Processing (NLP) pipeline to parse consultation notes. This
approach is the subject of our presently-reported study with a focus on
pain mentions.

1.1. NLP for pain assessment

NLP is a branch of Computer Science that utilizes statistical func-
tions and computational algorithms to analyze unstructured free text
and extract quantitative information from it [9]. Algorithms can be
trained to process large corpora of clinical narratives and extract rele-
vant biomedical information from them. To extract biomedical concepts
from clinical texts, one approach is to use pre-trained NLP models
such as bidirectional encoder representations from transformers (BERT)
[10]. Another approach is to combine the NLP technique with struc-
tured databases of clinical terminologies. Such structured databases are
designed to categorize and classify medical terms and clinical infor-
mation into standardized tables with a unique code for each medical
concept.

There are several well-known databases of clinical terminologies in-
use worldwide. The International Classification of Diseases (ICD) [11]
is one of them, maintained by the WHO. ICD-11 is the latest available
update of the ICD database. The SNOMED CT is the next one that
has encoded over 340,000 multilingual clinical healthcare terminolo-
gies [12]. This database is maintained by the SNOMED International
association. The Unified Medical Language System (UMLS) [13] is
another database maintained by the US National Library of Medicine
(NLM). The UMLS provides standard codes for thousands of biomedical
concepts and it includes both the ICD and SNOMED CT vocabular-
ies [14]. The NLM also provides the MetaMap NLP tool [15,16] to
extract biomedical concepts from clinical notes and map them to the
UMLS database. MetaMap, which is widely utilized in medical NLP
applications [17,18], has built-in libraries for sentence segmentation,
concept tokenization and abbreviation/acronym identification [19].
MetaMap uses the NegEx [20] negation detection algorithm to deter-
mine whether mentions of medical terms in the corpus were negated.
NegEx has a superior performance in negation detection compared to
other algorithms [21].

NLP techniques have been used for medical keyword searches,
classification of diagnoses, and extraction of cancer phenotype and
symptom-related information from clinical notes [22–28]. In some
studies, NLP has been used to extract mentions of chest pain and
back pain [29,30]. NLP has also been deployed to identify and classify
chronic pain [31,32], and to extract cancer-related pain scores [33].
Eisman et al.[34] successfully implemented the pre-trained BERT model
to extract angina symptoms from patients’ clinical notes. Bui and
Zeng [35] developed an NLP algorithm using regular expression ana-
lyzes to extract pain terminologies from clinical texts. Then, the authors
classified each note into ‘‘pain" and ‘‘no pain" groups using supervised
machine learning method. However, their algorithm was limited to
explicit indications of ‘‘pain" and did not achieve accuracy higher than
79% in identifying and assigning pain scores. Heintzelman et al. [33]
developed a more robust rules-based NLP technique to process clinical
notes and detect all pain terms and their severity scores in each note
in their cancer dataset with an accuracy of 96%. Then, for each note
2

they considered the pain term with the maximum severity as the ‘‘pain
index’’ and used it to evaluate the correlation between the cancer pain
severity and survival rate in metastatic prostate cancer patients. How-
ever, upon testing on a publicly-available hospital discharge summary
corpus, the accuracy of their NLP algorithm dropped to 64%. Also, the
authors of Ref. [33] found that their algorithm needed to be trained
on the new pain description patterns that they found in the publicly-
available corpora. The authors argued that this lack of generalizability
was attributed to more complex hypothetical wordings and past tense
descriptions in publicly-available corpora compared to cancer data sets.
It has been shown that more generalizable text classification models can
be achieved by exploiting word embedding techniques [36,37]. In study
by Tao et al. [38], integration of the GloVe word embedding resulted
in a significant performance improvement in the generalizability of
extracting prescription information (medication names, dosages and
frequencies) from clinical notes. Testing on the i2b2 dataset, authors
showed that F-1 score of their algorithm increased from 0.78 to 0.83
when they integrated GloVe word embedding.

The objective of our study was to develop a generalizable (i.e.
dataset independent) NLP pipeline to retrospectively process patients’
medical notes and identify all pain terms and their severity scores in
each note and assign a single verbally-declared pain (VDP) to each
note, representing the overall pain of the patient at the time of the con-
sultation. For each note, our VDP was obtained by averaging over the
pain scores detected in the note. For generalizability, unlike Heintzel-
man et al. [33], we first trained our pipeline on a publicly-available
dataset, and afterward applied our trained pipeline on another publicly-
available dataset and on our institutional radiation oncology dataset.
Moreover, motivated by the findings of Tao et al. [38], and in order to
provide a more generalizable solution, we used distributed word vector-
ization methods and word similarity features (GloVe word embedding).
Also, unlike Heintzelman et al. [33], that used pain term with the high-
est pain-score as their pain index, we averaged the pain scores to assign
a VDP to each note. We showed that these methods enabled building a
database-independent pipeline to identify pain description patterns, ex-
clude irrelevant mentions of pain, and calculate the physician-reported
VDP at the time of the hospital visit. This is important as it now allows
pain to be reliably extracted from radiation oncology consultation notes
in a way that can facilitate further pain-related studies.

The pain-related terms used in this paper are defined in Table 1.

2. Materials and methods

2.1. Corpora

In this study we used three independent corpora to develop and test
our NLP pipeline: (i) 1249 discharge summaries from the Informatics
for Integrating Biology & the Bedside (i2b2) #1 A Smoking challenge
database [39,40], (ii) 30 discharge summaries from the Medical In-
formation Mart for Intensive Care III (MIMIC-III) database [41], and
(iii) 788 consultation notes from the EHRs of 462 metastatic cancer
patients previously treated at our institution. Consultation notes for
metastatic cancer patients from our institution were extracted from the
ARIA database for Radiation Oncology (Varian Medical Systems, Palo
Alto, CA). All patients in our institutional corpus received palliative
radiotherapy for a secondary malignant neoplasm of bone at our cancer
center between January 2016 and September 2019. The textual data
from our institutional corpus were extracted from Microsoft Word
(.doc) documents using the Python textract package [42].

Detailed descriptions of the three corpora are presented in Appendix
7.1, and details of the number of characters and words in each corpus
are presented in Table 15.

All three corpora had similar mean numbers of characters per
clinical note (between 7000 to 9000, which is equivalent to two or
three pages of single-spaced text).

As presented in Fig. 2, of the 1249 i2b2 notes, 1099 randomly-
selected notes were used for concept extraction and training the NLP
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Table 1
Definitions of the terms used in this paper.

Term Definition

Pain terms The pain-related medical terms that were collected in Table 2. Each note might contain multiple pain terms.

Pain concepts The UMLS medical concepts that which were obtained by mapping the pain terms to the UMLS
metathesaurus (Table 19). Multiple pain concepts might be mapped to one pain term.

Pain score A pain term in a phrase that explicitly indicates an experience (score 1) or denial (score 0) of pain at the
time of the hospital visit. Pain terms that were not related to the time of the visit were assigned as
irrelevant pain. (See Fig. 4) Each note might contain multiple pain scores.

VDP A three-point verbally-declared pain (VDP) (no mention of pain, pain, no pain) that was assigned to each
note by averaging valid pain scores. (See Section 2.3.3)
Fig. 1. Normalized distributions of the number of characters (top panel) and number of the words (bottom panel) in the i2b2 (shown by orange color), MIMIC-III (green), and
ARIA (blue) corpora. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
pipeline, 120 notes (4 sets of 30 notes) were used for validation, and
the remaining 30 randomly-selected notes were reserved for testing. In
each iteration of training, we did a performance evaluation on one set
(30 notes) from the validation corpus. The test corpus was used for final
performance evaluation once the pipeline was completely developed.
Later, 30 notes from the MIMIC-III and 30 notes from ARIA corpora
were used for testing of the generalizability of the fully-developed
NLP pipeline. It should be noted that the MIMIC-III and ARIA corpora
were not used in any of the iterations of the training and validation.
Another set of 150 notes from ARIA corpora were used for testing the
performance of our NLP pipeline in assigning a Verbally-declared pain
(VDP) label to each note. Cochran’s [43] sample size formula was used
to determine the confidence interval of the selected sample sizes, as
presented in Section 7.4, in the Supplementary Information.

2.2. Preparation of the validation and test corpora

The notes from the validation corpus were annotated by developers
and were used to evaluate the performance of our NLP pipeline in
3

four iterations of the training. The final performance of the pipeline
to detect and score pain was evaluated against an expert-annotated
(gold-standard) test corpus from each dataset (Fig. 2).

We extracted all the sentences from each set in the validation
and test corpus. The sentences from validation set 1, set 2 and set
3 (2310, 2332, 2075 sentences, respectively) were manually anno-
tated by the primary developer. Validation set 4 (1012 sentences)
was manually annotated by an independent developer. The sentences
from the i2b2 (2361 sentences) and MIMIC-III (2717 sentences) test
corpora were manually annotated by an MD physician. The sentences
from the ARIA test corpus (1132 sentences) were manually annotated
by a radiation oncologist at our institution. The selected sample size
resulted in 95% confidence level with less than 1% margin of error (the
sample size calculation is presented in Section 7.4 in the Supplementary
Information).

Following Heintzelman et al.’s [33] example, sentences from the
test sets were annotated by our NLP pipeline. The domain experts
(MD physician, radiation oncologist) were then asked to compare their
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Fig. 2. The corpora used in this paper. From 1249 hospital discharge summaries form i2b2 corpora, 1099 notes were used for concept extraction and training of our NLP pipeline,
20 annotated notes were used for validation of our NLP pipeline in four iterations and 30 notes were reserved for testing of the fully-developed pipeline. The MIMIC-III and
RIA corpora were used only for testing of our NLP pipeline (these two corpora were never used for training). 150 notes from the ARIA corpora were used for testing the
erbally-declared pain (VDP) classification method.
anually-annotated sentences against the NLP annotation results to
roduce the gold-standard test sets. The rational for this step was to
nsure that the experts did not accidentally miss or mislabel any pain
erm.

To evaluate the accuracy of our VDP classification method, another
ndependent set of 150 notes from the ARIA corpus was annotated by
ix annotators (one oncologist, one medical physicist, and four oncol-
gy residents). Each annotator was asked to annotate a set of 50 notes
onsisting of 20 unique notes and 30 notes that were shared among
ll six annotators. These 30 notes were used to report inter-annotator
greement using Fleiss’ kappa statistical measure [44]. Each annotator
as asked to review each note and assign it to one of the five-grade
erbal rating scales; no mention of pain (when pain was not reported
n the note or pain was not reflecting the current state of the illness), no
ain (if the pain was explicitly denied), mild (pain score 1–3), moderate
pain score 4–6) and severe (pain score 7–10). However, since we found
hat pain scores were not consistently documented in the radiation
ncology consultation notes, which led to poor kappa measures for
nter-annotator agreement, we instead defined a three-grade verbally-
eclared pain scale (VDP) incorporating ‘no mention of pain’, ‘no pain’,
nd ‘pain’ (by grouping mild, moderate and severe pain scales as ‘pain’).
he 150 VDP-annotated notes provided a gold-standard for evaluation
f the accuracy of our VDP classification method. The selected sample
ize resulted in 0.026 standard error within a 95% confidence interval.
he detailed sample size calculation can be found in Section 7.4 of the
upplementary Information.

Because the aim of this project was classifying cancer pain in
adiation oncology clinical notes, the accuracy of our VDP classification
ethod was only tested on the ARIA corpus. Given the effort required,
e did not ask the radiation oncologists to spend their time annotating

2b2 and MIMIC-III corpora.

.3. Pain detection pipeline

Our pain detection pipeline consisted of three parts: (1) an NLP
ipeline to extract all UMLS medical concepts from the text documents,
2) a rules-based classifier to identify pain terms and extract valid pain
cores, and (3) a method to calculate an average pain intensity and
ssign a physician-reported VDP to each note. The terms used in this
aper are defined in Table 1.
4

2.3.1. Step 1: UMLS medical concept extraction
A flowchart describing our medical concept extraction pipeline, is

provided in Fig. 3.
The NLP algorithm was constructed in Python 3.7 using the spaCy

toolkit [45]. The MetaMap-14 [15,16] engine was installed on our
Ubuntu server and accessed from our custom-written Python code using
its Java API. We have made our NLP pipeline and the annotation tool
publicly available on GitHub [46].

As shown in Fig. 3, clinical notes were read by our custom-written
Python scripts [47] for pre-processing. Pre-processing was performed
using the Python spaCy package to remove white spaces, special char-
acters, and to convert all characters to lowercase. We also used a
custom-built lookup table to map pain-related medical acronyms (in-
cluding ‘‘cp’’: chest pain,‘‘lbp’’: lower back pain, and ‘‘akp’’ : anterior
knee pain). Our pipeline did not handle spelling errors. However, in
our training and validation we did not see any mislabeling due to
spelling errors. After pre-processing, larger documents were divided
into discrete pages with a maximum character limit of 8,000 to fit
the character limit of MetaMap’s batch processing software. Truncated
notes were passed page-by-page to MetaMap via MetaMap’s Java API.
MetaMap compiled each file as a ‘freetext’ and segmented it into
‘sentences’. Then, each sentence was processed phrase-by-phrase and
was mapped to all possible UMLS concepts. Metamap also, assigned
a confidence score for each concept indicating how much each UMLS
concept was relevant to the phrase [46]. The NegEx [20] algorithm
inside MetaMap was used for negation detection to determine whether
mentions of pain terms in the corpus were negated.

Each phrase, together with its assigned clinical concepts, their
negation statuses, confidence scores, and ICD codes were stored in a
temporary text file. Then, these temporary files were read and the
clinical concepts from all phrases of a note were concatenated into a
single text file. A sample annotated text is presented in Table 14 in the
Supplementary Information. Finally, the program read the processed
temporary files phrase by phrase and identified all medical concepts
with the ‘signs and symptoms’ UMLS tag. If multiple medical concepts
mapped to a phrase, the program selected the concept with the highest
confidence score. The program also extracted medical concepts with
a UMLS ‘pharmacologic substance’ semantic tag in order to identify
drug-related phrases. These tags were used to remove drug-related
phrases such as ‘‘take Tylenol for your back pain’’. All identified clinical
concepts were organized into a data table together with ICD concept
IDs, UMLS confidence scores, and negation indices. These data tables
were passed to the pain classifier for pain analysis.
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Fig. 3. Our pipeline for medical concept extraction using MetaMap and NegEx. Text from each clinical note was exported as a text document. The Python spaCy package was
used for the NLP of patients’ consultation notes for text cleaning. The cleaned medical notes were divided into discrete pages (pagination) and passed to the MetaMap and NegEx
algorithms via a Java API [16] for the medical name entity tagging and negation detection, respectively. Then, the processed corpora were passed to the pain classifier (Fig. 4)
to extract the pain scores. Selection rules were adjusted by evaluating extracted pain scores against the manually annotated pain scores. Finally, the extracted pain scores were
stored in the database for VDP calculation, statistical analyses, and performance evaluation.
Fig. 4. Our NLP pain classification pipeline to extract the physician-reported pain scores from patients’ clinical notes. Annotated files were processed phrase by phrase to filter
UMLS ‘signs and symptoms’ tags and identify pain-related biomedical concepts according to Table 2. Then, sets of rules were developed to remove hypothetical, historical and
drug related mentions of the pain and keep the pain term associated to the state of the pain at the time of the hospital visit. Finally, a pain score was assigned to the detected
pain term based on the negation status of the phrase.
2.3.2. Step 2: Pain classification

Our rules-based classifier for detecting pain scores is presented in
Fig. 4. A lookup table containing Heintzelman et al.’s [33] 66 pain-
related medical terminologies was used to determine which ‘signs and
symptoms’, detected by the program, were pain-related (Table 2).
5

In order to obtain the pain score at the time of the consultation∕
hospitalization, we excluded irrelevant mentions of pain. For example,
we excluded mentions of pain when the patient talked about the
history of pain that was not actually presented at the time of the
consultation∕hospital visit. For this purpose, we trained our pipeline in
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Table 2
Pain-related medical terminologies taken from Heintzelman et. al. [33]. These definitions were used to determine pain-related
‘signs and symptoms’ in the clinical notes by our pain classifier.

Ache Coccygalgia Glossalgias Myodynia Pressure
Aching Coccygodynia Glossodynia Myosalgia Proctalgia
Angina Coccyodynia Glossodynias Neuralgia Rectalgia
Arthralgia Coccyxdynia Gonalgia Neuralgias Retrosternal
Arthrodynia Coxalgia Inguinodynia Odynophagia Scapulalgia
Burning Cp Lbp Orchialgia Scapulodynia
Cephalalgia Cramp Low back syndrome Orchidalgia Sciatica
Cephalgia Discomfort Lumbago Orchidodynia Sore
Cephalodynia Dolor Lumbalgia Osteodynia Tender
Cervicalgia Dorsalgia Meralgia Otalgia Tightness
Cervicodynia Dorsodynia Metatarsalgia Pain
Claudication Dysuria Muscle weakness Pancreatalgia
Coccyalgia Esophagodynia Myalgia Postherpetic
Coccydynia Glossalgia Myalgias Neuralgia
Table 3
The lookup tables were formed by examining the training corpus and using the GloVe semantic embedding system. These
tables were used to exclude phrases with conditional, hypothetical, historical, and drug-related mentions of pain, and to keep
sentences with mentions of the patient’s current state of pain in our analysis.

Conditionals If, whether, when, in case of, in case, as needed, return,

Hypothetical Might, would, could, should, seek, as needed, call, return, possibly, possible, please, because
of, p.r.n.

Historical History, historical, in the past, previous, before, previously, in the last, prior, recent years

Exceptions Since, present, current, now, where, because of, prevent, manage, diagnosis, control, found,
lasted, treated, resolved, comfort, diagnosis, severe, worsening, aggravated, diffuse, severity,
increased, score, high, mild, moderate

Drug mentioned Clinical drug, pharmacologic substance

Drug exceptions f-, his, lead, histidine, prevent, wake, level, helium, dob
four iterations by manually auditing 5,138 randomly-selected sentences
from the training corpora:

(1) By randomly examining the training corpora, we created a
lookup table containing regular expressions related to conditional, hy-
pothetical, and historical terms. These regular expressions were used to
search and exclude any pain term used in a conditional, hypothetical, or
historical context (Table 3). We used the first validation set to evaluate
the performance of the NLP pipeline in correctly detecting valid pain
terms.

(2) By examining the training corpora, we created a lookup table
containing regular expressions describing current events or ongoing
situations such as ‘present’, ‘where’, and ‘control’. This table (called
exceptions) is used to avoid the removal of pain terms related to the
current state of the illness. Improvements in the performance of our
NLP pipeline was evaluated using the validation set 2.

(3) We used the Global Vectors Word Representation (GloVe) algo-
rithm [48] to generate semantic embedding vectors for all keywords
(regular expressions) in the above-mentioned lookup tables. Then, for
each keyword, we found five nearest GloVe words in semantic space
and added them into the corresponding lookup tables (Table 3). The
validation set 3 was used to check the performance of the NLP pipeline
at this iteration.

(4) We removed pain terms associated with pain medications by
excluding phrases containing the UMLS ‘pharmacologic substance’ and
‘clinical drug’ semantic type. Also, by randomly examining the training
corpus, we created an exception lookup table to avoid removing pain
terms associated with non-pain-related or ambiguous pharmacologic
substances like ‘dob’, ‘his’, and ‘lead’. We used the validation set 4
to evaluate how this iteration improved the performance of the NLP
pipeline.

In each iteration of the training, depending on the performance
of our NLP pipeline on the validation corpora, we either added more
keywords to each of the four lookup tables (Table 3) or removed
some keywords from the tables. For example, the keyword ‘since’ was
initially in the conditionals lookup table. But after iteration 1, we
6

moved this keyword to the exceptions lookup table, because, we found
Table 4
The confusion matrix for the three-label pain classifiers contains 3
correctly-predicted labels and 6 incorrectly-predicted labels. 𝑇𝑃𝑃 , 𝑇𝑁𝑁 ,
and 𝑇𝐼𝐼 are numbers of sentences that are correctly predicted as score
1, score 0, and irreverent pains, respectively. 𝐹𝑁𝑃 , 𝐹𝑃𝑁 , 𝐹𝑃𝐼 , 𝐹𝑁𝐼 , 𝐹𝐼𝑃 ,
and 𝐹𝐼𝑁 are numbers of mislabeled sentences.
True label Predicted label

Score 1 Score 0 Irrelevant

Score 1 𝑇𝑃𝑃 𝐹𝑃𝑁 𝑇𝑃𝐼
Score 0 𝐹𝑁𝑃 𝑇𝑁𝑁 𝐹𝑁𝐼
Irrelevant 𝐹𝐼𝑃 𝐹𝐼𝑁 𝑇𝐼𝐼

that most of the sentences with the keyword ‘since’ were indicating
an ongoing event. We added the keyword ‘p.r.n’ to the condition-
als lookup table, since we found that sentences that includes the
‘p.r.n’ keyword were most likely talking about a prescription drug.
Another example was ambiguous drug names. For instance, we found
that the MetaMap classified keyword ‘his’ as Histidine [Pharmacologic
Substance] and keyword ‘dob’ as Dimethoxybromoamphetamine [Phar-
macologic Substance]. We added both these terms to the exception look
up table.

Once satisfied with the training and validation, we did no more
development on our NLP pipeline and used gold-standard corpora to
evaluate the final performance of the NLP pipeline. Table 3 contains
the final versions of the lookup tables. Our NLP pipeline is available as
open-source in Ref. [46]

As illustrated in Fig. 4, after passing through the selection rules
each phrase was assigned to one of the three scores: valid mention
of experienced pain (pain score = 1), valid explicit denial of pain
(pain score = 0), and no/irrelevant mention of pain (score = nan) by
our pipeline. The third label was primarily used for NLP performance
evaluation. Examples of NLP extracted pain scores from i2b2 corpora

are provided in Tables 5 and 6.
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Table 5
Examples of the sentences from i2b2 corpora that were labeled correctly.

Sentence Manual pain
score

NLP pain
score

He states the feeling returned and then persisted, took a 2nd nitro but it only decreased the pain to a
[**2192-2-16**].

1 1

Per notes, her abdominal exam was significant for epigastric and right upper quadrant tenderness; 1 1

The patient took one sublingual nitro at home with some relief , but the pain came back as she
walking around her home looking for her hospital identification care.

1 1

He had no chest pain but did have diaphoresis and mild nausea and vomiting as well as
lightheadedness and some palpitations lasting approximately one hour in duration. ia.

0 0

He had no further episodes of chest pain while in the hospital. 0 0

Patient denies shortness of breath , chest pressure , or syncope. 0 0

He denies fevers or chills, shortness of breath or abdominal pain. 0 0

In July , 1989 , he developed chest pain and suffered an inferior myocardial infarction. – –

One week prior to admission , the patient had chest pain , which was quickly relieved by one
sublingual nitroglycerin.

– –

Morphine 15 mg tablet sustained release sig: one (1) tablet sustained release po every 4-6 h as
needed for pain.

– –

If you develop chest pain, nausea, vomiting, throat tightness, clamminess or shortness of breath, call
your pcp or go to the emergency room.

– –
Table 6
Examples of the mislabeled sentences from i2b2 corpora.

Sentence Manual pain
score

NLP pain
score

She refused any consultation at this time by the [*** ****] hospital pain service. - 1

His left groin was not accessed given his c/o left leg pain post surgery 2 months ago. - 0

The surgical sites were without any exudate or signs of infection and his tenderness in his right upper
extremity was markedly decreased.

1 0

In the ambulance , the patient continued to have the pain and she received one more sublingual
nitroglycerin and nasal cannula oxygen.

1 -

The patients abdominal pain could be related to intestinal angina. 1 -

asa , o2 , bb , 1 inch of nitropaste for elev bpof note , pt c/o pain on the r mid-lower back which
has been present x 1 wk , reproducible on light palpation.

1 -

History of present illness: 74 y/o female with pmh significant for copd, cad, and hypertension
admitted to [**hospital1 18**] on [**6-14**] to the surgery service with two days of epigastric and
right upper quadrant pain.

1 -

She does however complain of some urinary frequency ( on lasix ) in the last few days with out any
dysuria or urgency.

0 -
2.3.3. Step 3: VDP classification method

Valid pain scores were averaged for each note using Eq. (1) to obtain
the average pain intensity at the time of the consultation.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑎𝑖𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
∑

(𝑠𝑐𝑜𝑟𝑒 1 𝑝𝑎𝑖𝑛𝑠) −
∑

(𝑠𝑐𝑜𝑟𝑒 0 𝑝𝑎𝑖𝑛𝑠)
∑

(𝑠𝑐𝑜𝑟𝑒 1 𝑝𝑎𝑖𝑛𝑠) +
∑

(𝑠𝑐𝑜𝑟𝑒 0 𝑝𝑎𝑖𝑛𝑠)
(1)

To the best of our knowledge, there are no clinical guidelines to
assign a VDP score for overall pain [49]. Our rationale for using a
weighted average was to take into account the effect of the number
of pain mentions. Also, using a weighted average made it easier for us
to map average intensity to VDP. Such a weighted averaging has been
previously proposed in the literature for the evaluation of multi-site
pain [49–51].

A weighted average pain intensity can range from −1 (when 100%
of the valid pain mentions were negated) to 1 (if none of the valid
pain mentions was negated). We grouped the average pain intensities
in two VDPs by setting the intensity threshold at zero as ‘no pain’
(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑎𝑖𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ≤ 0), and ‘pain’ (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑎𝑖𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ≥ 0). We
used the receiver operating characteristic curve (ROC curve) and the
area under the curve (AUC) value [52] to examine the performance of
a VDP assignment at various intensity thresholds.
7

2.4. Assessment of the pipeline’s performance

Annotated notes from the validation corpora were used to check
and tune our NLP pipeline at each iteration of the training. The
gold-standard corpora, explained earlier, were used to check the per-
formance of our fully developed NLP pipeline. Confusion matrices
were produced to compare the pipeline’s performance against expert-
annotated gold-standard corpora. To avoid bias, NLP developers were
kept blinded to the test corpora throughout the entire process.

The confusion matrix for our three-label pain classifier is a 3 × 3
matrix, as presented in Table 4. This matrix includes 3 TRUE labels for
correctly-scored sentences, and 6 FALSE labels for incorrectly-scored
sentences (more details are provided in section 7.5).

We evaluated the performance of our NLP pipeline for pain scoring
and VDP assignment by calculating the precision, recall, and F1-score
(F1) from the confusion matrices [52].

3. Results

3.1. Pain classifier

We tested our NLP pipeline’s ability to extract pain terms from
notes in the i2b2, MIMIC-III, and ARIA corpora. By processing all the
available corpora, we found 19,851, 12,071, and 1883 suggested pain

concepts, respectively. Note that these pain concepts include all the
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Table 7
The frequency of score 0 and score 1 pain terms labeled by the NLP pipeline in
each of the three corpora. Total number of valid pain terms are provided inside
the brackets.

i2b2 MIMIC-III ARIA
% (n = 4385) % (n = 3109) % (n = 2572)

Score 1 pain 64.9 54.1 78.3
Score 0 pain 35.1 45.9 21.7

Table 8
Verbally-declared pain (VDP) at the time of the consultation using all available
notes from each corpora. The VDP was obtained by averaging over all pain scores
in each note. Percentile values are specified in parentheses.

i2b2 MIMIC-III ARIA

Pain 706 (56.5%) 442 (50.4%) 511 (64.9%)
No pain 305 (24.4%) 262 (29.9%) 104 (13.2%)
No mention of pain 238 (19.1%) 173 (19.7%) 173 (21.9%)

UMLS concepts that were extracted from the clinical notes. This means
that multiple pain concepts may have been mapped to one phrase as
described earlier.

The result of our rule-based pain detection pipeline (shown in
Fig. 4) for detecting the pain score is presented in Table 7. Using
the UMLS confidence score to remove duplicate concepts, we obtained
uniquely-mapped experienced pain terms and explicitly denied pain
terms from the i2b2, MIMIC-III, and ARIA corpora. Finally, by removing
conditional, hypothetical, and drug-related pain terms, we obtained
2845, 1682, and 2013 relevant terms presenting the pain score 1 as well
as 1540, 1427, and 559 score 0 pain terms in the i2b2, MIMIC-III, and
ARIA corpora, respectively. Table 5 contains a few example sentences
from i2b2 corpora in which pain scores were correctly labeled by our
NLP pipeline. Examples of pain terms that were not labeled correctly
by our NLP pipeline are provided in Table 6.

On averaging over the pain scores in each note using Eq. (1), we
obtained the VDP at the time of consultation/hospitalization in the
three corpora. Distribution of the VDP is presented in Table 8. Based on
our VDP calculations, we found that pain was not documented in 22%
of the cancer notes, 13% of our cancer patients denied the experience
of pain and at least 65% of cancer patients experienced some level of
pain. These results were in agreement with the results reported in the
other papers [53].

3.2. Inter-annotator agreement

Inter-annotator agreement among 6 annotators in assigning notes to
a 5-grade pain scale is provided in Table 18 (Supplementary Informa-
tion). We calculated Fleiss’ kappa measure and obtained a moderate
agreement among 6 annotators (𝜅 = 0.43). This indicated that pain
cores were not sufficiently documented in the consultation notes.
herefore, we instead defined a 3-grade pain scale (called VDP status)
y merging ‘mild’, ‘moderate’ and ‘severe pain’ assignments into a
ingle category as ‘pain’. We measured the inter-annotator agreement
gain and we obtained substantial agreement between six annotators
n assigning VDP with Fleiss’ kappa measure of 𝜅 = 0.66.

.3. Performance of the pain classifier

The confusion matrices, generated by comparing NLP-extracted pain
cores against expert-annotated gold-standard from each corpus, are
resented in Table 9. Based on these confusion matrices, we calcu-
ated precision, recall and F1-score. These results are summarized in
able 10. To compare the performance of our NLP pipeline with the
rior studies, we provided the performances of the pain extraction
LP algorithms presented by Heintzelman et al. [33] and Bui and
eng-Treitler [35].
8

Table 9
Following the approach described in Table 4, for each corpus a three-class
confusion matrix was obtained. The name of the corresponding corpus is
mentioned in the top left cell of the matrix.
True label Predicted label

i2b2 Pain score 1 Pain score 0 Irrelevant

Pain score 1 78 1 11
Pain score 0 0 22 1
Irrelevant 5 1 2241

True label Predicted label

MIMIC-III Pain score 1 Pain score 0 Irrelevant

Pain score 1 51 1 6
Pain score 0 0 15 3
Irrelevant 3 1 2635

True label Predicted label

ARIA Pain score 1 Pain score 0 Irrelevant

Pain score 1 70 1 13
Pain score 0 1 24 5
Irrelevant 10 1 1007

Fig. 5. The ROC curve was generated to investigate the performance of a VDP
classification method at various intensity thresholds. The AUC is calculated to be 0.86.

3.4. Performance of the VDP classifier

The performance of the VDP classification method was evaluated
using the 3-grade VDP gold-standard corpora. A 3 × 3 confusion matrix
was formed for the three-grade VDP, as explained in Section 2.4.
Table 11 shows the confusion matrix for NLP extracted VDP. The ROC
curve is plotted in Fig. 5 for various intensity thresholds. The AUC is
calculated to be 0.86.

Of the 150 notes selected for the performance evaluation, 14 notes
did not have any valid mention of pain (no mention of pain), 112
notes had ‘pain’, and 24 had ‘no pain’ (denied pain) VDP. Among the
112 notes with the mentions of experienced pain, our VDP extraction
method correctly classified 104 of them while five were misclassified as
no pain and the other three were misclassified as no mention of pain.
Among the 24 notes with no pain VDP, our pipeline correctly classified
16 of them and incorrectly labeled seven as pain and one as no mention
of pain.

Based on these results, we calculated the precision, recall, and F1-
score for the VDP extraction method that are shown in Table 12. We
achieved 92%, 76%, and 75% precision in classifying the notes into the
‘pain’, ‘no pain’, and ‘no mention of pain’ VDP, respectively.
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Table 10
The precision (P), recall (R) and F1-score (F) of the pain detection pipeline calculated based on the confusion matrices
presented in Table 9. The performances of the NLP pipelines from prior studies are provided for a comparison.

Author Pain score 1 Pain score 0

P R F P R F

Present study (i2b2) 94.0 86.7 90.2 91.7 95.7 93.6
Present study (MIMIC-III) 94.4 88.0 91.1 88.2 83.3 85.7
Present study (ARIA) 86.4 83.3 84.8 92.3 80.0 85.7

Heintzelman et al. [33]a 86 95 90 82 95 88
Bui and Zeng-Treitler [35]b 73.2 56.6 63.8 78.8 74.2 76.4

aCalculated based on the manual annotation of 111 pain mentions that were extracted from 30 discharge summaries
from i2b2 database.
bCalculated based on manual annotation of 702 pain mentions that were extracted from 100 documents from the
US Department of Veterans Affairs’ (VA) electronic medical records.
Table 11
Following the approach described in Section 2.4, a three-point VDP
confusion matrix was formed based on the manual audit of 120
randomly-selected notes from the ARIA corpora.
True VDP Predicted VDP

ARIA Pain No pain No mention of pain

Pain 104 5 3
No pain 7 16 1
No mention of pain 2 0 12

Table 12
The precision, recall and F1-score of the VDP extraction method has
been calculated using Table 11.

ARIA Precision Recall F1-score

Pain 92.0% 92.9% 92.4%
No pain 76.2% 66.7% 71.4%
No mention of pain 75.0% 85.7% 80.4%

4. Discussion

4.1. Quality of corpora

Comparing the number of words and sentences in Fig. 1, we found
that the consultation notes from the ARIA corpus contained noticeably
fewer words and sentences compared to the discharge summaries from
the i2b2 and MIMIC-III corpora. Since notes from the i2b2 and MIMIC-
III corpora were pre-processed and de-identified for public use, they
contained more broken sentences. Nonetheless, we found that the
distribution of the length of words and sentences were similar across
all three corpora. Therefore, the similarity of the datasets was not
very affected by the pre-processing and de-identification steps. This
suggests that notes from various resources are similar enough to be used
together in a study such as this.

4.2. Distribution of the pain terms in the notes

Distribution of the pain terms in the notes from three corpora,
presented in Table 19 in the Supplementary Information, revealed that
pain distribution from the ARIA corpus was notably different from the
other two corpora. As expected, the ARIA corpus included only patients
with bone metastases, hence, there were more mentions of bone-related
pain terms such as back pain and pelvic pain. We also observed that
almost 58% of the experienced pain was reported as generic pain
without specifying the pain site in the ARIA corpus while this was only
34% and 38% in the other two corpora. We suspect that it was because
the consultation notes in ARIA were prepared by radiation oncologists
who solely examined cancer patients, while discharge summaries were
prepared by general physicians who visited patients with a variety of
conditions.

Comparing the experienced pain with the total pain mentions, we
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detected that pain was experienced in 65% and 54% of the cases
in the i2b2 and MIMIC-III corpora respectively, while this number
increased to 78% in the ARIA corpus. Again, we assume that the
explanation for this might be due to the nature of these three corpora
with i2b2 and MIMIC-III containing notes for patients visiting general
hospitals while our ARIA database included exclusively notes for cancer
patients with bone metastases. Remarkably, the 78% experienced pain
for metastatic cancer patients agrees with the results reported in several
other studies [54,55].

4.3. Accuracy of the pain score measurements

Performance of our NLP pipeline was evaluated using the gold-
standard test sets explained in Section 2.4. As presented in Table 10,
our pipeline outperformed prior pain detection pipelines developed by
Heintzelman et al.[33] and Bui and Zeng-Treitler [35].

Once we fully trained and tested our pipeline using the i2b2 training
corpus, we examined the generalizability of our NLP pain detection
pipeline using independent corpora from MIMIC-III and ARIA. Note that
our NLP pipeline was used on the MIMIC-III and ARIA corpora without
further training on these corpora. The precision of our NLP pipeline in
detecting score 1 pain did not change when we applied it to the MIMIC-
III corpora. However, it dropped to 86% when we applied our pipeline
to the ARIA corpora. The reason for having more mislabeled score 1
pain in the ARIA corpus can be attributed to the difference in the corpus
type. The i2b2 and MIMIC-III corpora were general hospital discharge
summary notes, while the ARIA corpus comprises radiation oncology
consultation notes. As stated previously, up to 50% reduction in the
precision is commonly expected when moving from public corpora to
private corpora. Therefore, a 12% drop in the precision of our NLP
pipeline was reasonable. This suggests that NLP pipelines that are
trained on one type of documents (i.e. hospital discharge summaries
in this case) can be successfully transferred to analyze patients’ other
clinical notes (such as cancer consultation notes in this study).

The precision in detecting score 0 pain reduced from 92% to 88%
when the MIMIC-III corpus was analyzed. The decrease in precision
might be as a result of more diverse negation terms in the MIMIC-III,
which includes notes from more diverse sources compared to the i2b2
database. The precision of our pipeline in detecting score 0 pain terms
was 92% when analyzing the ARIA corpus. The main reason for such a
high precision was because of better sentence segmentation in ARIA
corpus compared to i2b2 and MIMIC-III corpora. Both the i2b2 and
MIMIC-III were de-identified corpora with a lot of broken sentences.
Therefore, it was much harder for our NLP pipeline to detect negation
(score 0 pain terms). Examples of mislabeled pain terms are presented
in Table 6 in the Supplementary Information.

The recall parameter provided more information about the behavior
of our NLP system. Recall was the measure of how well our pipeline
correctly identified all true labels. In the i2b2 and MIMIC-III corpora,
we achieved 87% and 88% recall in detecting score 1 pain, respectively.
The recall decreased to 83% for the ARIA corpus. As shown in Table 9,

in the ARIA corpus, a notable number of the score 1 pain was assigned
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as irrelevant pain. We believe this noticeable mislabeling were related
to the pain terms that were describing patient’s previous experience of
having pain. As expected, most of cancer patients had a history of long
term chronic pain which presumably made it difficult for our pipeline
to separate them from pain at the time of the consultation.

The recall values for detecting all mentions of score 0 pain were
96%, 83%, and 80% for the i2b2, MIMIC-III, and ARIA corpora, respec-
tively. We believe that this variation in the recall values of score 0 pain
was partially due to the layout of the notes in each corpus. For example,
in the i2b2 corpus that was used to train our NLP pipeline, each note
had a separate section for prescription drugs. Therefore, the drug-
related pain terms could be filtered much easier than in the MIMIC-III
corpus in which the prescription drugs were mentioned within the notes
in an unstructured format. It should be noted that , as we explained
in section 7.1, we did not cut any segment of the notes in any of the
corpora to assure the generalizability of our pipeline.

Having fewer score 0 pain terms might also influence the calculated
recall values. Table 9 shows that there were only 23, 18 and 30
score 0 pain terms in i2b2, MIMIC-III and ARIA validation corpora,
respectively. This means that any mislabeled score 0 pain, introduced
a large uncertainty to the recall values.

The overall performance of our NLP pipeline on various corpora was
also evaluated using F1-scores. The F1-score did not vary much among
the three corpora. F1-score of score 1 pain only decreased from 0.90 in
i2b2 to 0.85 in ARIA corpus. Similarly, F1-score of score 0 pain changed
from 0.94 in i2b2 to 0.86 in ARIA corpus.

4.4. Accuracy of the VDP extraction

Based on the ROC curve with an AUC value of 0.86 (Fig. 5), our VDP
extraction method had good performance in distinguishing between
patients with and without pain. As presented in Table 12, our VDP
extraction method successfully detected ‘pain’ with 92.0% precision
and 92.9% recall. However, it showed fundamental limitations in de-
tecting ‘no pain’, with 76.2% precision and 66.7% recall. The main
reason for such a high recall and low precision in detecting no pain
VDP was that ARIA was an imbalanced corpus, where the classes were
not represented equally (i.e. there was ∼ 5x more experienced pain than
no pain cases, as shown in Table 11.)

In addition, investigating the notes in the i2b2 training set, we
noticed that when patients reported pain at multiple sites in their body,
our classification method was not able to extract VDP precisely. Our
method of measuring VDP was confounded by the reality of the notes
of metastatic cancer patients, because, for these patients, it is expected
to have multiple pain sites with different pain scores in each site.

One possible solution is to add functionality to obtain pain severity
from patients’ consultation notes by analyzing the pain assessment
terminologies (such as severe, mild, controlled) and by capturing nu-
merical pain scores for each identified pain site directly from the
consultation notes.

5. Conclusion

Our database-independent NLP pipeline, trained using i2b2 hospital
discharge summary corpora, was successfully implemented to detect
and classify pain from the publicly-available MIMIC-III hospital dis-
charge summary corpus, and our institutional radiation oncology ARIA
consultation note database for cancer patients with bone metastases.
The pipeline’s performance was evaluated against physician-annotated
gold standard corpora. Our pipeline achieved a precision and a recall
of 89% and 82% in detecting physician-reported pain, respectively,
demonstrating successful and state-of-the-art extraction and classifica-
tion of pain from radiation oncology clinical notes. It also automatically
assigned a VDP for each clinical note with 84% and 80% overall
10

precision and recall.
An important and intended application of our NLP tool is that it
can be used to reliably extract physician-reported cancer pain from
clinical notes in radiation oncology, where the pain is not other-
wise documented through structured data entry. Having access to
this database-independent NLP pain-extraction pipeline will facilitate
further informatics and data-mining studies in radiation oncology that
require access to pain information that is typically very difficult to
obtain.

CRediT authorship contribution statement

Hossein Naseri: Methodology, Software, Validation, Formal anal-
ysis, Investigation, Resources, Data curation, Visualization, Writing –
original draft. Kamran Kafi: Validation, Writing – review & editing.
Sonia Skamene: Validation. Marwan Tolba: Validation. Mame Daro
Faye: Validation. Paul Ramia: Validation. Julia Khriguian: Valida-
tion. John Kildea: Conceptualization, Investigation, Resources, Writ-
ing – review & editing, Supervision, Project administration, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Funding for this research was provided by the startup grant of Dr.
John Kildea at Research Institute of the McGill University Health Centre
(RI-MUHC), RI-MUHC studentship, Ruth and Alex Dworkin scholarship
award from the McGill University - Faculty of Medicine, and Grad
Excellence Award-00293 from the McGill University - Department of
Physics. The authors would like to thank Ms. Haley Patrick for the
manual audit of our validation sets. We thank Mr. Farzin Khosrow-
Khavar for his help with sample size evaluation and statistical analysis.
We also thank Dr. Marc David for his clinical support.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jbi.2021.103864.

References

[1] World Health Organization, WHO Guidelines for the Pharmacological and
Radiotherapeutic Management of Cancer Pain in Adults and Adolescents, World
Health Organization, 2018, http://www.ncbi.nlm.nih.gov/pubmed/30776210.

[2] M.G. Nayak, A. George, M.S. Vidyasagar, S. Mathew, S. Nayak, B.S. Nayak, Y.N.
Shashidhara, A. Kamath, Quality of life among cancer patients, Ind. J. Palliat.
Care 23 (4) (2017) 445–450, http://dx.doi.org/10.4103/IJPC.IJPC_82_17.

[3] L.S. Simon, Relieving pain in america: a blueprint for transforming prevention,
care, education, and research, J. Pain Palliat. Care Pharmacother. 26 (2) (2012)
197–198, http://dx.doi.org/10.3109/15360288.2012.678473.

[4] G.G. Page, S. Ben-Eliyahu, The immune-suppressive nature of pain, Sem. Oncol.
Nursing 13 (1) (1997) 10–15, http://dx.doi.org/10.1016/S0749-2081(97)80044-
7.

[5] D.B. Gordon, J.L. Dahl, C. Miaskowski, B. McCarberg, K.H. Todd, J.A. Paice,
A.G. Lipman, M. Bookbinder, S.H. Sanders, D.C. Turk, D.B. Carr, American Pain
Society Recommendations for improving the quality of acute and cancer pain
management: American pain society quality of care task force, Arch. Internal
Med. 165 (14) (2005) 1574–1580, http://dx.doi.org/10.1001/archinte.165.14.
1574.

[6] M.P. Cadogan, J.F. Schnelle, N.R. Al-Sammarrai, N. Yamamoto-Mitani, G. Cabr-
era, D. Osterweil, S.F. Simmons, A standardized quality assessment system to
evaluate pain detection and management in the nursing home, J. Amer. Med.
Direct. Assoc. 6 (1) (2005) 1–9, http://dx.doi.org/10.1016/j.jamda.2004.12.002.

[7] T.J. Keay, The mind-set of pain assessment, J. Amer. Med. Direct. Assoc. 6 (1)
(2005) 77–78, http://dx.doi.org/10.1016/j.jamda.2004.12.011.

https://doi.org/10.1016/j.jbi.2021.103864
http://www.ncbi.nlm.nih.gov/pubmed/30776210
http://dx.doi.org/10.4103/IJPC.IJPC_82_17
http://dx.doi.org/10.3109/15360288.2012.678473
http://dx.doi.org/10.1016/S0749-2081(97)80044-7
http://dx.doi.org/10.1016/S0749-2081(97)80044-7
http://dx.doi.org/10.1016/S0749-2081(97)80044-7
http://dx.doi.org/10.1001/archinte.165.14.1574
http://dx.doi.org/10.1001/archinte.165.14.1574
http://dx.doi.org/10.1001/archinte.165.14.1574
http://dx.doi.org/10.1016/j.jamda.2004.12.002
http://dx.doi.org/10.1016/j.jamda.2004.12.011


Journal of Biomedical Informatics 120 (2021) 103864H. Naseri et al.
[8] L. Ohno-Machado, Realizing the full potential of electronic health records: the
role of natural language processing, J. Amer. Med. Inform. Assoc. 18 (5) (2011)
http://dx.doi.org/10.1136/amiajnl-2011-000501, 539–539.

[9] S. Bird, E. Klein, E. Loper, Natural Language Processing with Python, first ed.,
OŔeilly Media, Inc., 2009.

[10] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidi-
rectional transformers for language understanding, in: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
Association for Computational Linguistics, Minneapolis, Minnesota, 2019, pp.
4171–4186, http://dx.doi.org/10.18653/v1/N19-1423.

[11] WHO, International classification of diseases, 11th revision (ICD-11), WHO
(2019) http://www.who.int/classifications/icd/en/.

[12] S. International, SNOMED CT January 2020 International Edition - SNOMED
International Release notes - SNOMED International Release Management -
SNOMED Confluence, https://confluence.ihtsdotools.org/display/RMT, [online].

[13] O. Bodenreider, The unified medical language system (UMLS): integrating
biomedical terminology, Nucleic Acids Res. 32 (Database issue) (2004) 267–270,
http://dx.doi.org/10.1093/nar/gkh061.

[14] Bethesda (MD), UMLS® Reference Manual, National Library of Medicine (US),
2009, https://www.ncbi.nlm.nih.gov/books/NBK9676/.

[15] A.R. Aronson, F.M. Lang, An overview of metamap: Historical perspective and
recent advances, J. Amer. Med. Inform. Assoc. 17 (3) (2010) 229–236, http:
//dx.doi.org/10.1136/jamia.2009.002733.

[16] D. Demner-Fushman, W.J. Rogers, A.R. Aronson, Metamap lite: an evaluation of
a new java implementation of metamap, J. Amer. Med. Inform. Assoc. 24 (4)
(2017) 841–844, http://dx.doi.org/10.1093/jamia/ocw177.

[17] J. Zhang, X. Long, T. Suel, Performance of compressed inverted list caching in
search engines, in: Proceeding of the 17th International Conference on World
Wide Web 2008, WWW’08, ACM Press, New York, New York, USA, 2008, pp.
387–396, http://dx.doi.org/10.1145/1367497.1367550.

[18] L.M. Simon, S. Karg, A.J. Westermann, M. Engel, A.H.A. Elbehery, B. Hense,
M. Heinig, L. Deng, F.J. Theis, Metamap: an atlas of metatranscriptomic reads
in human disease-related RNA-seq data, GigaScience 7 (6) (2018) http://dx.doi.
org/10.1093/gigascience/giy070.

[19] R. Reátegui, S. Ratté, Comparison of metamap and cTAKES for entity extraction
in clinical notes, BMC Med. Inform. Decis. Mak. 18 (2018) http://dx.doi.org/10.
1186/s12911-018-0654-2.

[20] W.W. Chapman, W. Bridewell, P. Hanbury, G.F. Cooper, B.G. Buchanan, A simple
algorithm for identifying negated findings and diseases in discharge summaries,
J. Biomed. Inform. 34 (5) (2001) 301–310, http://dx.doi.org/10.1006/jbin.2001.
1029.

[21] S. Wu, T. Miller, J. Masanz, M. Coarr, S. Halgrim, D. Carrell, C. Clark, Negations
not solved: Generalizability versus optimizability in clinical natural language
processing, in: C. Lovis (Ed.), PLoS ONE 9 (11) (2014) e112774, http://dx.doi.
org/10.1371/journal.pone.0112774.

[22] Z. Zeng, Y. Deng, X. Li, T. Naumann, Y. Luo, Natural language process-
ing for EHR-based computational phenotyping, IEEE/ACM Trans. Comput.
Biol. Bioinform. 16 (1) (2019) 139–153, http://dx.doi.org/10.1109/TCBB.2018.
2849968.

[23] X. Wang, A. Chused, N. Elhadad, C. Friedman, M. Markatou, Automated knowl-
edge acquisition from clinical narrative reports, in: AMIA ... Annual Symposium
Proceedings / AMIA Symposium. AMIA Symposium, 2008 (2008) 783–787.

[24] I.V. Haller, C.M. Renier, M. Juusola, P. Hitz, W. Steffen, M.J. Asmus, T. Craig,
J. Mardekian, E.T. Masters, T.E. Elliott, Enhancing risk assessment in patients
receiving chronic opioid analgesic therapy using natural language processing,
Pain Med. 18 (10) (2016) 1952–1960, http://dx.doi.org/10.1093/pm/pnw283.

[25] T.A. Koleck, C. Dreisbach, P.E. Bourne, S. Bakken, Natural language processing
of symptoms documented in free-text narratives of electronic health records:
a systematic review, J. Amer. Med. Inform. Assoc. 26 (4) (2019) 364–379,
http://dx.doi.org/10.1093/jamia/ocy173.

[26] A. Hardjojo, A. Gunachandran, L. Pang, M.R.B. Abdullah, W. Wah, J.W.C.
Chong, E.H. Goh, S.H. Teo, G. Lim, M.L. Lee, W. Hsu, V. Lee, M.I.-C. Chen, F.
Wong, J.S.K. Phang, Validation of a natural language processing algorithm for
detecting infectious disease symptoms in primary care electronic medical records
in Singapore, JMIR Med. Inform. 6 (2) (2018) e36, http://dx.doi.org/10.2196/
medinform.8204.

[27] G.K. Savova, E. Tseytlin, S. Finan, M. Castine, T. Miller, O. Medvedeva, D. Harris,
H. Hochheiser, C. Lin, G. Chavan, R.S. Jacobson, Deepphe: A natural language
processing system for extracting cancer phenotypes from clinical records, Cancer
Res. 77 (21) (2017) e115–e118, http://dx.doi.org/10.1158/0008-5472.CAN-17-
0615.

[28] S.M. Meystre, G.K. Savova, K.C. Kipper-Schuler, J.F. Hurdle, Extracting informa-
tion from textual documents in the electronic health record: a review of recent
research, Yearb. Med. Inform. (2008) 128–144, http://dx.doi.org/10.1055/s-
0038-1638592.

[29] S.S. Pakhomov, H. Hemingway, S.A. Weston, S.J. Jacobsen, R. Rodeheffer, V.L.
Roger, Epidemiology of angina pectoris: Role of natural language processing of
the medical record, Amer. Heart J. 153 (4) (2007) 666–673, http://dx.doi.org/
10.1016/j.ahj.2006.12.022.
11
[30] W.K. Tan, S. Hassanpour, P.J. Heagerty, S.D. Rundell, P. Suri, H.T. Huhdanpaa,
K. James, D.S. Carrell, C.P. Langlotz, N.L. Organ, E.N. Meier, K.J. Sherman,
D.F. Kallmes, P.H. Luetmer, B. Griffith, D.R. Nerenz, J.G. Jarvik, Comparison of
natural language processing rules-based and machine-learning systems to identify
lumbar spine imaging findings related to low back pain, Acad. Radiol. 25 (11)
(2018) 1422–1432, http://dx.doi.org/10.1016/j.acra.2018.03.008.

[31] T.Y. Tian, I. Zlateva, D.R. Anderson, Using electronic health records data to
identify patients with chronic pain in a primary care setting, J. Amer. Med.
Inform. Assoc. 20 (E2) (2013) e275, http://dx.doi.org/10.1136/amiajnl-2013-
001856.

[32] S.J. Fodeh, D. Finch, L. Bouayad, S.L. Luther, H. Ling, R.D. Kerns, C. Brandt,
Classifying clinical notes with pain assessment using machine learning, Med. Biol.
Eng. Comput. 56 (7) (2018) 1285–1292, http://dx.doi.org/10.1007/s11517-017-
1772-1.

[33] N.H. Heintzelman, R.J. Taylor, L. Simonsen, R. Lustig, D. Anderko, J.A.
Haythornthwaite, L.C. Childs, G.S. Bova, Longitudinal analysis of pain in patients
with metastatic prostate cancer using natural language processing of medical
record text, J. Amer. Med. Inform. Assoc. 20 (5) (2013) 898–905, http://dx.doi.
org/10.1136/amiajnl-2012-001076.

[34] A.S. Eisman, N.R. Shah, C. Eickhoff, G. Zerveas, E.S. Chen, W.-C. Wu, I.N. Sarkar,
Extracting angina symptoms from clinical notes using pre-trained transformer
architectures, 2020, arXiv:2010.05757.

[35] D.D.A. Bui, Q. Zeng-Treitler, Learning regular expressions for clinical text
classification, J. Amer. Med. Inform. Assoc. 21 (5) (2014) 850–857, http://dx.
doi.org/10.1136/amiajnl-2013-002411.

[36] V. Major, A. Surkis, Y. Aphinyanaphongs, Utility of general and specific word
embeddings for classifying translational stages of research, in: AMIA. Annual
Symposium Proceedings. AMIA Symposium, vol. 2018, NLM (Medline), 2018,
pp. 1405–1414.

[37] Y. Si, J. Wang, H. Xu, K. Roberts, Enhancing clinical concept extraction with
contextual embeddings, J. Amer. Med. Inform. Assoc. 26 (11) (2019) 1297–1304,
http://dx.doi.org/10.1093/jamia/ocz096.

[38] C. Tao, M. Filannino, O. Uzuner, Prescription extraction using CRFs and word
embeddings, J. Biomed. Inform. 72 (2017) 60–66, http://dx.doi.org/10.1016/j.
jbi.2017.07.002.

[39] D.T. Heinze, M.L. Morsch, B.C. Potter, R.E. Sheffer, Medical i2b2 NLP smoking
challenge: The A-life system architecture and methodology, J. Amer. Med.
Inform. Assoc. 15 (1) (2008) 40–43, http://dx.doi.org/10.1197/jamia.M2438.

[40] O. Uzuner, Y. Luo, P. Szolovits, Evaluating the state-of-the-art in automatic
de-identification, J. Amer. Med. Inform. Assoc. 14 (5) (2007) 550–563, http:
//dx.doi.org/10.1197/jamia.M2444.

[41] A.E. Johnson, T.J. Pollard, L. Shen, L.W.H. Lehman, M. Feng, M. Ghassemi, B.
Moody, P. Szolovits, L. Anthony Celi, R.G. Mark, MIMIC-III, a freely accessible
critical care database, Sci. Data 3 (1) (2016) 1–9, http://dx.doi.org/10.1038/
sdata.2016.35.

[42] D. Malmgren, Textract documentation release 1.1.0, 2014, https://textract.
readthedocs.io/en/stable/.

[43] W.G. Cochran, Sampling Techniques, third ed., John Wiley, 1977.
[44] J.L. Fleiss, J. Cohen, The equivalence of weighted kappa and the intraclass

correlation coefficient as measures of reliability, Educ. Psychol. Meas. 33 (1973)
613–619, http://dx.doi.org/10.1177/001316447303300309.

[45] spaCy, ⋅ Industrial-strength Natural Language Processing in Python, https://
spacy.io/ [online].

[46] H. Naseri, Textractor; tools for pain scoring, in: GitHub Repository, GitHub, 2021,
http://dx.doi.org/10.5281/zenodo.4649625.

[47] Intro to data structures - pandas 1.0.5 documentation [online].
[48] J. Pennington, R. Socher, C.D. Manning, GloVe: Global Vectors for Word

Representation, https://nlp.stanford.edu/pubs/glove.pdf [online].
[49] M.S. Wallace, J. North, E.J. Grigsby, L. Kapural, M.R. Sanapati, S.G. Smith, C.

Willoughby, P.J. McIntyre, S.P. Cohen, R.M. Rosenthal, S. Ahmed, R. Vallejo,
F.M. Ahadian, T.L. Yearwood, A.W. Burton, E.J. Frankoski, J. Shetake, S. Lin,
B. Hershey, B. Rogers, N. Mekel-Bobrov, An integrated quantitative index for
measuring chronic multisite pain: The multiple areas of pain (MAP) study,
Pain Med. (United States) 19 (2018) 1425–1435, http://dx.doi.org/10.1093/pm/
pnx325, https://pubmed.ncbi.nlm.nih.gov/29474648/.

[50] S.D. Rundell, K.V. Patel, M.A. Krook, P.J. Heagerty, P. Suri, J.L. Friedly, J.A.
Turner, R.A. Deyo, Z. Bauer, D.R. Nerenz, A.L. Avins, S.S. Nedeljkovic, J.G.
Jarvik, Multi-site pain is associated with long-term patient-reported outcomes in
older adults with persistent back pain, Pain Med. (United States) 20 (2019) 1898–
1906, http://dx.doi.org/10.1093/pm/pny270, https://pubmed.ncbi.nlm.nih.gov/
30615144/.

[51] M.P. Jensen, C. Tomé-Pires, E. Solé, M. Racine, E. Castarlenas, R. o de la Vega,
J. Miró, Assessment of pain intensity in clinical trials: Individual ratings vs
composite scores, Pain Med. (United States) 16 (2015) 141–148, http://dx.doi.
org/10.1111/pme.12588, https://pubmed.ncbi.nlm.nih.gov/25280226/.

[52] A. Tharwat, Classification assessment methods, Appl. Comput. Inform. 17 (1)
(2018) 168–192, http://dx.doi.org/10.1016/j.aci.2018.08.003.

[53] M. Kuchuk, C.L. Addison, M. Clemons, I. Kuchuk, P. Wheatley-Price, Incidence
and consequences of bone metastases in lung cancer patients, J. Bone Oncol. 2
(1) (2013) 22–29, http://dx.doi.org/10.1016/j.jbo.2012.12.004.

http://dx.doi.org/10.1136/amiajnl-2011-000501
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb9
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb9
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb9
http://dx.doi.org/10.18653/v1/N19-1423
http://www.who.int/classifications/icd/en/
https://confluence.ihtsdotools.org/display/RMT
http://dx.doi.org/10.1093/nar/gkh061
https://www.ncbi.nlm.nih.gov/books/NBK9676/
http://dx.doi.org/10.1136/jamia.2009.002733
http://dx.doi.org/10.1136/jamia.2009.002733
http://dx.doi.org/10.1136/jamia.2009.002733
http://dx.doi.org/10.1093/jamia/ocw177
http://dx.doi.org/10.1145/1367497.1367550
http://dx.doi.org/10.1093/gigascience/giy070
http://dx.doi.org/10.1093/gigascience/giy070
http://dx.doi.org/10.1093/gigascience/giy070
http://dx.doi.org/10.1186/s12911-018-0654-2
http://dx.doi.org/10.1186/s12911-018-0654-2
http://dx.doi.org/10.1186/s12911-018-0654-2
http://dx.doi.org/10.1006/jbin.2001.1029
http://dx.doi.org/10.1006/jbin.2001.1029
http://dx.doi.org/10.1006/jbin.2001.1029
http://dx.doi.org/10.1371/journal.pone.0112774
http://dx.doi.org/10.1371/journal.pone.0112774
http://dx.doi.org/10.1371/journal.pone.0112774
http://dx.doi.org/10.1109/TCBB.2018.2849968
http://dx.doi.org/10.1109/TCBB.2018.2849968
http://dx.doi.org/10.1109/TCBB.2018.2849968
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb23
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb23
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb23
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb23
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb23
http://dx.doi.org/10.1093/pm/pnw283
http://dx.doi.org/10.1093/jamia/ocy173
http://dx.doi.org/10.2196/medinform.8204
http://dx.doi.org/10.2196/medinform.8204
http://dx.doi.org/10.2196/medinform.8204
http://dx.doi.org/10.1158/0008-5472.CAN-17-0615
http://dx.doi.org/10.1158/0008-5472.CAN-17-0615
http://dx.doi.org/10.1158/0008-5472.CAN-17-0615
http://dx.doi.org/10.1055/s-0038-1638592
http://dx.doi.org/10.1055/s-0038-1638592
http://dx.doi.org/10.1055/s-0038-1638592
http://dx.doi.org/10.1016/j.ahj.2006.12.022
http://dx.doi.org/10.1016/j.ahj.2006.12.022
http://dx.doi.org/10.1016/j.ahj.2006.12.022
http://dx.doi.org/10.1016/j.acra.2018.03.008
http://dx.doi.org/10.1136/amiajnl-2013-001856
http://dx.doi.org/10.1136/amiajnl-2013-001856
http://dx.doi.org/10.1136/amiajnl-2013-001856
http://dx.doi.org/10.1007/s11517-017-1772-1
http://dx.doi.org/10.1007/s11517-017-1772-1
http://dx.doi.org/10.1007/s11517-017-1772-1
http://dx.doi.org/10.1136/amiajnl-2012-001076
http://dx.doi.org/10.1136/amiajnl-2012-001076
http://dx.doi.org/10.1136/amiajnl-2012-001076
http://arxiv.org/abs/2010.05757
http://dx.doi.org/10.1136/amiajnl-2013-002411
http://dx.doi.org/10.1136/amiajnl-2013-002411
http://dx.doi.org/10.1136/amiajnl-2013-002411
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb36
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb36
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb36
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb36
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb36
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb36
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb36
http://dx.doi.org/10.1093/jamia/ocz096
http://dx.doi.org/10.1016/j.jbi.2017.07.002
http://dx.doi.org/10.1016/j.jbi.2017.07.002
http://dx.doi.org/10.1016/j.jbi.2017.07.002
http://dx.doi.org/10.1197/jamia.M2438
http://dx.doi.org/10.1197/jamia.M2444
http://dx.doi.org/10.1197/jamia.M2444
http://dx.doi.org/10.1197/jamia.M2444
http://dx.doi.org/10.1038/sdata.2016.35
http://dx.doi.org/10.1038/sdata.2016.35
http://dx.doi.org/10.1038/sdata.2016.35
https://textract.readthedocs.io/en/stable/
https://textract.readthedocs.io/en/stable/
https://textract.readthedocs.io/en/stable/
http://refhub.elsevier.com/S1532-0464(21)00193-3/sb43
http://dx.doi.org/10.1177/001316447303300309
https://spacy.io/
https://spacy.io/
https://spacy.io/
http://dx.doi.org/10.5281/zenodo.4649625
https://nlp.stanford.edu/pubs/glove.pdf
http://dx.doi.org/10.1093/pm/pnx325
http://dx.doi.org/10.1093/pm/pnx325
http://dx.doi.org/10.1093/pm/pnx325
https://pubmed.ncbi.nlm.nih.gov/29474648/
http://dx.doi.org/10.1093/pm/pny270
https://pubmed.ncbi.nlm.nih.gov/30615144/
https://pubmed.ncbi.nlm.nih.gov/30615144/
https://pubmed.ncbi.nlm.nih.gov/30615144/
http://dx.doi.org/10.1111/pme.12588
http://dx.doi.org/10.1111/pme.12588
http://dx.doi.org/10.1111/pme.12588
https://pubmed.ncbi.nlm.nih.gov/25280226/
http://dx.doi.org/10.1016/j.aci.2018.08.003
http://dx.doi.org/10.1016/j.jbo.2012.12.004


Journal of Biomedical Informatics 120 (2021) 103864H. Naseri et al.
[54] A. Tsuya, T. Kurata, K. Tamura, M. Fukuoka, Skeletal metastases in non-small
cell lung cancer: A retrospective study, Lung Cancer 57 (2007) 229–232, http:
//dx.doi.org/10.1016/j.lungcan.2007.03.013.
12
[55] M. Kuchuk, C.L. Addison, M. Clemons, I. Kuchuk, P. Wheatley-Price, Incidence
and consequences of bone metastases in lung cancer patients, J. Bone Oncol. 2
(1) (2013) 22–29, http://dx.doi.org/10.1016/j.jbo.2012.12.004.

http://dx.doi.org/10.1016/j.lungcan.2007.03.013
http://dx.doi.org/10.1016/j.lungcan.2007.03.013
http://dx.doi.org/10.1016/j.lungcan.2007.03.013
http://dx.doi.org/10.1016/j.jbo.2012.12.004

	Development of a generalizable natural language processing pipeline to extract physician-reported pain from clinical reports: Generated using publicly-available datasets and tested on institutional clinical reports for cancer patients with bone metastases
	Introduction
	NLP for pain assessment

	Materials and methods
	Corpora
	Preparation of the validation and test corpora
	Pain detection pipeline
	Step 1: UMLS medical concept extraction
	Step 2: Pain classification
	Step 3: VDP classification method

	Assessment of the pipeline's performance

	Results
	Pain classifier
	Inter-annotator agreement
	Performance of the pain classifier
	Performance of the VDP classifier

	Discussion
	Quality of corpora
	Distribution of the pain terms in the notes
	Accuracy of the pain score measurements
	Accuracy of the VDP extraction

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


