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Abstract
Purpose: To develop a Natural Language Processing (NLP) and Machine
Learning (ML) pipeline that can be integrated into an Incident Learning System
(ILS) to assist radiation oncology incident learning by semi-automating incident
classification. Our goal was to develop ML models that can generate label rec-
ommendations, arranged according to their likelihoods, for three data elements
in Canadian NSIR-RT taxonomy.
Methods: Over 6000 incident reports were gathered from the Canadian national
ILS as well as our local ILS database. Incident descriptions from these reports
were processed using various NLP techniques. The processed data with the
expert-generated labels were used to train and evaluate over 500 multi-output
ML algorithms.The top three models were identified and tuned for each of three
different taxonomy data elements, namely: (1) process step where the incident
occurred, (2) problem type of the incident and (3) the contributing factors of the
incident. The best-performing model after tuning was identified for each data
element and tested on unseen data.
Results: The MultiOutputRegressor extended Linear SVR models performed
best on the three data elements. On testing, our models ranked the most appro-
priate label 1.48 ± 0.03, 1.73 ± 0.05 and 2.66 ± 0.08 for process-step, problem-
type and contributing factors respectively.
Conclusions: We developed NLP-ML models that can perform incident classi-
fication. These models will be integrated into our ILS to generate a drop-down
menu. This semi-automated feature has the potential to improve the usability,
accuracy and efficiency of our radiation oncology ILS.
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1 INTRODUCTION

Radiotherapy demands coordinated involvement of a
range of health professionals to manage the complex-
ities and procedural intricacies of accurate and timely
radiation treatment. Although the associated risk of
misadministration is estimated to be rare, the conse-
quences of errors may be significant.1,2 Accordingly, the
radiation oncology community has invested in incident
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learning systems (ILSes) to improve the safety culture,
reduce incident recurrence, and prevent new incidents
altogether.3,4 Incident learning refers to the complete
process of reporting and analyzing “incidents,” “near-
misses,” and “reportable circumstances” and putting in
place interventions to achieve these goals.2

While the use of incident learning in other indus-
tries, such as aviation and nuclear power, is well
established,5,6 its application in healthcare is relatively
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new. In radiotherapy, various ILSes came into existence
only in the last two decades or so7,8,9 and are in regular
use today at institutional, regional, and national levels. In
Canada, the National System for Incident Reporting—
Radiation Treatment (NSIR-RT)10 is an incident classi-
fication taxonomy and the associated national ILS was
implemented in 2015 in an effort to standardize Cana-
dian radiotherapy incident learning practices. NSIR-RT
was developed by the Canadian Partnership for Qual-
ity Radiotherapy11 and is managed by the Canadian
Institute for Health Information (CIHI).12 NSIR-RT has
been adopted by almost all Canadian radiotherapy cen-
ters and its taxonomy has been integrated into sev-
eral commercial and open-source ILS software. In 2016,
our group incorporated the NSIR-RT taxonomy into an
open-source ILS software called the Safety and Inci-
dent Learning System (SaILS)13,14 and deployed it in
our radiotherapy center as part of a quality and safety
improvement project.15

As shown in Figure 1a, the SaILS incident reporting
interface includes only a small number of data elements,
in order to facilitate rapid submission of incidents into
the database. The most substantial component of the
initial incident report is the incident description, which
is a free-text description of the incident that should be
written in a no-blame manner. Each reported incident
is assigned an investigator, who is alerted by email
to complete the incident classification using SaILS’
investigation interface, shown in Figure 1b. To do so, the
investigator must classify the incident by selecting the
most appropriate label(s) from a dropdown list for each
NSIR-RT data element.

A total of 1587 incidents were reported in SaILS
between January 2016 and December 2020, yielding
an average reporting rate of about 26 incidents per
month for our radiotherapy center, which treats approx-
imately 325 new patients per month. Analyzing, investi-
gating,and labelling these incidents manually is an ardu-
ous task that requires dedicated time and resources.
Manual classification of an incident can be difficult,
especially because the most important information is
described as free text in the incident report. This moti-
vated us to attempt automated classification by convert-
ing unstructured data (free text) into structured infor-
mation using natural language processing (NLP)16 and
machine learning (ML).17

Supervised ML methods18,19 that aim to predict
the classification labels (class labels) of new incident
reports by learning from expert-labelled training data
have been used previously in the field of medical inci-
dent learning.20,21,22 However, it is acknowledged that
ML approaches cannot yet replace manual incident
classification21,23,24 due to their imperfections and inac-
curacies. For this reason, the goal of our study was
to build ML models that can assist the investigator
rather than attempt to fully automate incident classifica-

tion in radiation oncology. Our intention was to develop
models that can learn from previously labelled inci-
dent reports and generate a dropdown menu that dis-
plays suggested class labels for each new incident
in descending order of probability of being correct. A
mockup of the data element dropdown menu for the
“process step where the incident occurred” is shown in
Figure 2. With this approach, investigators can read the
incident description as normal but with our dropdown
menu, they can save time during the label selection. Our
models are intended to make the investigation process
more convenient and to serve as a safety net for the
investigators.

In this manuscript, we describe how we developed
supervised NLP-ML models that can generate label rec-
ommendations for three data elements in the NSIR-RT
taxonomy. The three data elements are (i) the process
step where the incident occurred, (ii) the type of prob-
lem reported, and (iii) the contributing factors that led
to the incident. These data elements have 8, 16, and 25
possible labels, respectively. We chose these three data
elements for this study because their labels are typically
derived directly from the incident descriptions, without
requiring further investigation.

2 METHODS AND MATERIALS

2.1 Data sources

We obtained 1587 expert-labelled radiation oncology
incident reports from our SaILS database and an
additional 5098 incidents from the national NSIR-RT
database managed by CIHI. SaILS uses the 2015 pre-
pilot version25 of the NSIR-RT taxonomy whereas CIHI
uses the 2017 post-pilot version,26 which introduced
new class labels and modified some pre-existing ones.
Therefore, we consolidated the data by mapping the
CIHI data to the pre-pilot taxonomy, following the CIHI
guidelines (Spencer Ross, CIHI, email communication,
25 February 2020), in order to build a model that works
in SaILS. Because several of the incidents were still
under investigation (i.e., incomplete) when the data were
collected, not all data elements were labelled. Thus, we
had a total of 5572, 5911, and 5909 reported incidents
with expert-generated labels corresponding respec-
tively to the process step, problem type, and contributing
factors data elements. The inherently imbalanced distri-
bution of class labels for these three data elements in
our dataset is shown in Figure 3, Figure 4, and Figure 5,
respectively. The reason for this imbalance relates to
the nature of radiotherapy delivery and the inherent
probabilities for incidents to occur. Note that only a
single label may be assigned for the process step and
problem type data elements, while multiple labels may
be assigned for the contributing factors data element.
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F IGURE 1 (a) Screenshot of the reporting interface of the Safety and Incident System (SaILS) as seen by an incident reporter (left), (b)
screenshot of the SaILS investigation interface (right); figures obtained from Montgomery et al.15

2.2 NLP of the incident descriptions

The CIHI system is bilingual and hence our dataset
consisted of incident descriptions in both French and
English.Additionally, these descriptions contained gram-
matical errors, spelling mistakes, improper sentence

structure, and shorthand that needed to be pro-
cessed to improve the performance of the ML mod-
els. In this section, we describe how we used vari-
ous NLP techniques to process the free-text incident
descriptions to render them suitable for input into ML
models.



4 MATHEW ET AL.

F IGURE 1 Continued

This study was performed entirely using various
Python packages (Python 3.8). The text processing
techniques that we implemented and the corresponding
Python packages were:

1. Line-break removal: New lines or line breaks
(“∖n” characters) were replaced by periods (full

stops) to introduce breaks after complete sen-
tences using the built-in “replace” function in
Python.

2. Translation: We used the Google translate API pack-
age in Python called “google-trans-new” version
1.1.927 to translate French incident descriptions into
English. Using the language detection function, we
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F IGURE 2 A mockup of the drop-down menu that lists the
“process step where the incident occurred” label recommendations in
the order of their probability, according to a machine learning model
applied to the corresponding incident description following natural
language processing; each label recommendation and its associated
probability of being appropriate for the incident under investigation is
shown

identified the reports that were in French and then
translated them.

3. Punctuation and whitespace removal: Python’s stan-
dard library for regular expression operations28 was
used to remove all the punctuation marks and unnec-
essary blank spaces between words in every sen-
tence.

4. Lowercase normalization: In this step, all letters were
transformed to their lowercase equivalent to ensure
that instances of the same word that were written dif-
ferently were identified as a single object (e.g., Radi-
ation, radiation, RADIATION, etc.).

5. Autocorrection: Using Python’s spell-checking pack-
age “PyEnchant” version 3.1.1,29 all words that
had spelling errors according to the US English
PyEnchant dictionary were identified and corrected.
PyEnchant falsely identifies some radiation oncol-
ogy terms as incorrect, such as “vacloc,” “brachy,”
and “isoshift.” These were manually identified and
exempted from autocorrection.

6. Entity replacement: The advanced NLP package
SpaCy (version 2.3.2)30,31 has a textual entity recog-
nition feature.This feature was used to identify words
or ordinals that describe time, date, quantity, and per-
centage in our text and replace them with a generic
label that describes the entity. For example, knowing
an exact date (e.g., 2 June 2020) holds no more sig-
nificance than knowing that entity is a “date” in the
context of ML classification.

7. Stopword removal and lemmatization:Stopwords are
words that are used frequently in English, such as
“the,”“an,”“and,”“with,”and “but.”These words have no
classification value and can degrade text classifica-
tion in some scenarios.32 We used SpaCy to remove
all stopwords and subsequently applied its lemmati-
zation feature to normalize the text. Lemmatization

refers to the process of replacing words with their
basic dictionary form (lemma).33 For instance, the
words “working,” “works,” and “worked” were changed
to their normalized form “work.”

Table 1 in results shows some examples of how
these techniques transformed the radiation oncology
incident descriptions.

2.3 Supervised learning

In this section, we describe the steps involved in devel-
oping ML models that can generate ranked lists of
appropriate class labels in order of their probability. All
of the Python packages described in this section were
obtained from the Scikit-learn ML module34 (version
0.23.1).

2.3.1 Data vectorization

The NLP-processed incident descriptions and their
associated class labels were required to be converted
into vectors or matrices that the ML model could under-
stand.The process of transforming text data into numer-
ical arrays is known as data vectorization in NLP.

The NLP-processed incident descriptions were vec-
torized by means of the Term Frequency–Inverse
Document Frequency (TF-IDF) vectorizer of Scikit-
learn. The TF-IDF vectorizer assigned a weighted score
to every term in the description based on its frequency
of occurrence in the entire incident dataset when gener-
ating the matrix of features (words). This facilitated the
determination of the most relevant features when cat-
egorizing a large number of reports. Individual reports
were represented as rows of this multidimensional
matrix. In order to conserve some of the interterm
relations, we specified bigrams (e.g., “green mattress”
and “plan ready”) and trigrams (e.g., “external beam
plan” and “request rad onc” ) to be vectorized, keeping
the word order unchanged, in addition to the individ-
ual words. Only words and bigrams with a minimum
frequency of three were considered for vectorization.

The class-label data were vectorized using the one-
hot encoding (OHE) technique.35 OHE generates a
matrix Yij, where i spans the number of reports in our
dataset labelled for a given data element and j is the
number of labels for that data element. Yij took the
value 1 when ith report was labelled with jth label and in
all other cases, Yij was set to zero.

2.3.2 Model selection and training

Selecting the optimal ML algorithm (referred to as an
estimator in Scikit-learn) for a specific problem can be
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F IGURE 3 Histogram showing the process step label distribution in our dataset of 5572 radiation oncology incident reports; out of the eight
label options available, each report was labelled with one process step

F IGURE 4 Histogram showing the problem type label distribution in our dataset of 5911 labelled radiation oncology incident reports; out of
16 label options available, each report was labelled with one problem type

challenging, especially given a large number of avail-
able estimators. An estimator can be a classifier or a
regressor algorithm. Classifiers are ML algorithms that
can categorize data into discrete categories whereas
regressors are algorithms that can predict continuous
variable quantities. Our approach was to evaluate the
performance of all available estimators on our dataset

and to select the best. We obtained 52 base esti-
mators and five estimator ensembles from the Scikit-
learn library. Ensembles are collections of base estima-
tors that work together to generate robust models that
are more generalizable.34 These ensembles are meta-
estimators that take another estimator as a parameter
to build a model. Therefore, we obtained 260 ensemble-
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F IGURE 5 Histogram showing the contributing factor label distribution in our dataset of 5909 labelled radiation oncology incident reports;
out of 25 label options available, each report was labelled on average with two contributing factors

base combinations in addition to the 52 base estimators
to evaluate.

We were faced with a multilabel classification
problem36 for which the goal was to generate a

ranked list of possible class labels, unlike predict-
ing a single label per incident. Scikit-learn provides four
techniques (two each for classifiers and regressors) to
extend an estimator’s functionality to support multilabel
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TABLE 1 Five example incident descriptions from our dataset are shown in their original format as well as after processing in our natural
language processing pipeline for comparison. The processed text demonstrates the impact of lowercase normalization, autocorrection,
punctuation and whitespace removal, entity replacement, stopword removal, and lemmatization

Example no. Original incident description Processed text

1 INCCURATE TARGET. CTV WAS BIGGER THAN PTV, WAS
NOTICED ONLY AT THE END OF PLANNING PROCESS,
TARGET HAD TO BE CORRECTED AND PLAN REDONE.

Inaccurate target ctv big ptv notice end planning
process target correct plan redone

2 No review status . Pt started rt on May 22, films were never
reviewed until May 27th. Reached 7/9 and MD never verified films

Review status pt start rt date film review date reach
md verify film

3 No anti-emetic. 1 shot spine plus 25/5 rectum. Anti-emetic never
prescribed for spine treatment. Danger of patient being sick
during rectum iso and treat.

Anti-emetic shoot spine plus quantity rectum anti
emetic prescribe spine treatment danger patient
sick rectum iso treat

4 Not enough time to do the work, risk for mistakes. Waiting time for
patient. PLAN 2 received last minute to do the plan in dosi 2 h
before the patient appointment

Time work risk mistake wait time patient plan receive
time plan dosi hours patient appointment

5 Patient orientation. During treatment set up, we noticed that the
documented patient orientation was wrong. Patient was scanned
HEAD FIRST, but the ct-sim set up sheet indicates FEET FIRST

Patient orientation treatment set notice document
patient orientation wrong patient scan head ordinal
ct sim set sheet indicate foot ordinal

classification. These are the MultiOutputClassifier, Clas-
sifierChain, MultiOutputRegressor, and RegressorChain
multi-output techniques. Among the 312 estimators
compiled, classifiers used both MultiOutputClassifier
and ClassifierChain methods and regressors used both
MultiOutputRegressor and RegressorChain methods
to enable the multilabel capability. Thus, we assembled
more than 600 extended multi-output estimators, some
of which were not compatible with the technique and
raised execution errors on training, which we later
removed from our pipeline.

Multilabel techniques work on the principle of solving
for a single label at a time, by assigning one instance of
the estimator for every label option available. In practice,
this implies, for a data element with 16 label options, for
example, the multilabel model will generate 16 instances
of an estimator and assign one for each label. These
16 instances will try to find if their label is best fitting for
the incident, either in parallel (MultiOutputClassifier and
MultiOutputRegressor) or in series (ClassifierChain and
RegressorChain). This ability to fit the model on individ-
ual label options and to get fit scores for each label lets
us also use regressors for our classification problem.

We evaluated the performance of all these multi-
output estimators on the training set (80% of the
dataset, chosen randomly) using the fivefold cross-
validation technique.37 In K-fold cross validation (K = 5
in our case, chosen based on the size of our training
dataset), the data are split into K equally sized groups
and the algorithm iteratively uses each unique group
for performance evaluation while the rest are used for
training until K groups are used once.

A scorer named “TrueLabelIndex scorer” was custom
built using the make_scorer function of Scikit-learn,
which measured the average index of the correct class
label in the ranked list, according to probability, as pre-
dicted by an estimator. For instance, if the TrueLabelIn-

dex scorer assigns a value of 2 for an estimator, it implies
that the estimator was able to place the correct label
as the second-most probable option in the ranked list,
on average. In other words, if this estimator was used to
build the dropdown menu in SaILS,as shown in Figure 2,
investigators will see the most appropriate label appear-
ing as the second suggestion in the dropdown list most
of the time. In the case of contributing factors, where
there was more than one label for every incident, the
index of the contributing factor that first appeared in the
predicted dropdown list was considered to be the Tru-
eLabelIndex score. Based on this TrueLabelIndex score
and the training time,we shortlisted three trained estima-
tors (models) per data element that performed the best
and tuned them, as described in the following section.

2.3.3 Model tuning and final testing

Each model has a set of parameters that can take a
wide range of values. Hyperparameter tuning is the pro-
cess of identifying the parameter values that maximize
a model’s performance.We automated the hyperparam-
eter tuning of the top three models for each taxonomy
data element ((i) the process step where the incident
occurred, (ii) the type of problem reported, and (iii) the
contributing factors that led to the incident) using the
GridSeachCV function of the Scikit-learn. Grid search
is essentially a trial-and-error approach in which the
model is tested on an exhaustive set of parameters and
evaluated each time a parameter is changed until the
best score is attained. Of the three shortlisted models
per data element, we selected a single, tuned model
that performed the best for that data element. These
tuned models were then tested on the test set (20%
of the dataset), which the models were seeing for the
first time and for which the final test score was noted. A
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F IGURE 6 A flowchart describing the stages of our natural language processing–machine learning model development; simultaneous
procedures for each data element are represented by parallel lines/arrows

flowchart of our complete NLP-ML model development
pipeline is shown in Figure 6.

2.4 Benchmarking our model

As shown in Figures 3, 4, and 5, our raw data have an
inherent label distribution that is not uniform. Therefore,
we undertook a benchmarking analysis to ensure that
our ML model performance was superior to a baseline
analytical approach. In this analytical approach,we gen-
erated another ranked list of label suggestions for each
of the three data elements that we considered. These
lists were generated by simply arranging the label
options in order of decreasing frequency, as per the
distributions shown in Figures 3,4,and 5.This analytical
approach was evaluated by applying it to our testing
data set, measuring the resulting TrueLabelIndex, and
comparing the results with our ML model.

3 RESULTS

Table 1 shows some examples of how our NLP pipeline
transformed the radiation oncology incident descrip-
tions.Example 1 in the table clearly shows the impact of
lowercase normalization, punctuation and whitespace
removal, autocorrection of the word “inaccurate,” stop-
word removal, and lemmatization of the word “bigger.”
In example 2, the words “May 22” and “May 27th” are

TABLE 2 TrueLabelIndex scores for the three best-performing
models that were evaluated for classification of the process step
data element on the training data with fivefold cross validation; the
TrueLabelIndex scorer we custom built for model evaluation scored
on a scale of 1–8, for which the ideal score is 1

Models trained on process step
dataset

TrueLabelIndex score
(1–8; best score = 1)

MultiOutputRegressor + Ridge 1.57

MultiOutputRegressor + Linear SVR 1.71

MultiOutputRegressor + SGD Regressor 2.07

TABLE 3 TrueLabelIndex scores for the three best-performing
models that were evaluated for classification of the problem type
data element on the training data with fivefold cross validation; the
TrueLabelIndex scorer we custom built for model evaluation scored
on a scale of 1–16, for which the ideal score is 1

Models trained on problem type
dataset

TrueLabelIndex score
(1–16; best score = 1)

MultiOutputRegressor + SGD Regressor 2.96

MultiOutputRegressor + Linear SVR 2.98

MultiOutputRegressor + Passive
Aggressive Regressor

3.38

replaced with the word “date,” which is the effect of
entity replacement.

Tables 2, 3, and 4 show the top three models that
performed the best with respect to the TrueLabelIndex
score on the training data for the process step, problem
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F IGURE 7 Distribution of TrueLabelIndex scores obtained for the process step dataset for the label predictions made by the optimal
machine learning model and the analytical benchmark on the final test set

TABLE 4 TrueLabelIndex scores for the three best-performing
models that were evaluated for classification of the contributing
factors data element on the training data with fivefold cross
validation; the TrueLabelIndex scorer we custom built for model
evaluation scored on a scale of 1–25, for which the ideal score is 1

Models trained on contributing
factors dataset

TrueLabelIndex score
(1–25; best score = 1)

MultiOutputRegressor + SGD Regressor 4.32

MultiOutputRegressor + Lasso Lars 4.88

MultiOutputRegressor + Linear SVR 7.62

type, and contributing factors datasets respectively.
We found that the MultiOutputRegressor method of
enabling multilabel classification was the fastest and
most accurate across all three datasets.

Hyperparameter tuning of the top three models for
each dataset revealed that the combination of Multi-
OutputRegressor with the Linear SVR (support vector
regressor) base estimator was the most accurate model
for our data. This finding was consistent across all three
datasets corresponding to the process step, problem
type, and contributing factors labels. The final TrueLa-

belIndex score, obtained when this model was used
to predict the labels of the unseen test set, is given in
Table 5. The TrueLabelIndex score obtained using the
benchmarking analytical approach is also included for
the purpose of comparison. The distributions of the
final test scores that were obtained with the optimal
ML model as well as with the benchmarking analytical
model are shown for each data element in Figures 7, 8,
and 9, respectively.

4 DISCUSSIONS

Incident learning using ML techniques is a relatively new
approach in radiation oncology.To the best of our knowl-
edge, the only published report of using NLP-ML meth-
ods to automate radiotherapy incident learning was by
Syed et al. in 2020.38 In their study, they used tradi-
tional ML as well as transfer learning methods to per-
form binary classification of incident severity (high vs.
low). Therefore, our work complements the literature by
providing first-hand insight into the capability of NLP-
ML methods to classify three other radiotherapy inci-

TABLE 5 The final test—TrueLabelIndex scores of the optimal, trained models for each of the three data elements, after hyperparameter
tuning; uncertainties are the standard error of the corresponding mean value. The final test score was obtained by testing the model on unseen
data and the closer the score is to 1, the better the model is. The score range for the process step, problem type, and contributing factors data
elements were 1–8, 1–16, and 1–25, respectively. The TrueLabelIndex score from the benchmarking analytical approach is included for
comparison

Data element Optimal machine learning (ML) model
TrueLabelIndex score obtained
with ML model (Best score = 1)

TrueLabelIndex score obtained
with analytical approach (Best
score = 1)

Process step MultiOutputRegressor + Linear SVR 1.48 ± 0.03 2.20 ± 0.04

Problem type MultiOutputRegressor + Linear SVR 1.73 ± 0.05 2.74 ± 0.08

Contributing factors MultiOutputRegressor + Linear SVR 2.66 ± 0.08 4.75 ± 0.09
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F IGURE 8 Distribution of TrueLabelIndex scores obtained for the problem type dataset for the label predictions made by the optimal
machine learning model and the analytical benchmark on the final test set

F IGURE 9 Distribution of TrueLabelIndex scores obtained for the contributing factors dataset for the label predictions made by the optimal
machine learning model and the analytical benchmark on the final test set

dent data elements, namely: the process step of inci-
dent occurrence, problem type, and contributing fac-
tors. Our work had the additional advantages of a large
dataset consisting of 6685 incident reports and multil-
abel compatible ML models. Interestingly, Syed et al.38

reported that the Linear Support Vector Machine (SVM)
was the optimal ML model for their radiation oncology
incident report data. This is consistent with our result,
as our optimal ML model was the Linear SVR model,
which is a regressor derivative of SVM. It is interest-
ing that a regressor model worked better than a clas-
sifier model for our classification problem. We believe
that it is because of the fact that the regressor mod-
els, like Linear SVR, are shown to work well even when

the data are sparse and imbalanced like what we had,
compared to our classifiers that underperform in such
conditions. However, it must be noted that we have only
tuned the hyperparameters of the top three models
to compare. All other models that we evaluated used
default parameter settings.Therefore, it is possible that a
model, other than the top three, could potentially outper-
form our chosen models when the hyperparameters are
optimized.

Our work has several limitations, including the inher-
ent imbalance of label distributions in our dataset. As
seen from Figures 2, 3, and 4, some class labels are
more common than the others,which introduces a skew-
ness in the model training because the model is trained
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unequally on all the labels. In this work, however, we did
not attempt to solve this problem of label imbalance.
Although the repercussions of this will not reflect in our
model performance because it is representative of the
real-world scenario, more balanced data are needed to
improve the model’s generalizability. Even then, a model
can only be as good as the data themselves and, as
mentioned earlier, the free-text incident descriptions had
many human errors. Our NLP processing pipeline was
designed to address some of these errors using tech-
niques such as autocorrection but such methods are not
perfect. For example, the autocorrection function made
about two mistakes for every ten corrections accord-
ing to a manual examination of a subset of our data.
Additionally, in our pipeline,we lose term negations (e.g.,
“no treatment”) and we did not process abbreviations.
While the inclusion of bigrams and trigrams was an
attempt to account for the negation loss, most nega-
tions were already lost during the stopword removal
stage itself. Another major factor that impacts model
performance is the subjectivity involved in the man-
ual labelling of these incident reports. We consider the
labels assigned by various investigators as our ground
truth for model training, but these data can have inac-
curacies introduced by the subjectivity of investigating
personnel.

It is important to note that the mean TrueLabelIndex
score obtained with the contributing factor model (Tru-
eLabelIndex score of 2.66) was inferior to that obtained
with the process step and problem type models (Tru-
eLabelIndex scores of 1.48 and 1.73, respectively).
There are two likely reasons for this, the first of which
is that the contributing factor data element has 25 label
options, which is considerably more than that for the
process step and problem type (8 and 16, respectively).
Indeed, the process step model achieved the highest
TrueLabelIndex score and had the lowest number of
label options. Secondly, an incident can be labelled
with multiple contributing factors, whereas only a single
process step and problem type can be assigned per
incident. Having more labels to learn, from the same
features of the incident descriptions, may reduce the
efficiency and accuracy of learning.

Despite these various shortcomings, the final results
of applying our optimal models to all three data elements
appear very promising. Comparison of the TrueLabelIn-
dex scores obtained with the ML model and the bench-
mark analytical approach showed significant improve-
ment. Potentially, with deep-learning techniques, we
may be able to improve the performance further in the
future. We will incorporate these models into the SaILS
investigator interface for each of the data elements
considered. In real-time operation, each model will
analyze the reported incident description and provide a
ranked list of label options in a dropdown menu for the
corresponding data element. According to our results,

the most appropriate label would appear, on average,
within the first three options, which should improve the
usability of the SaILS interface for the investigator. Our
NLP-ML pipeline and our trained, tuned models are
available under open-source licenses on GitHub.39

5 CONCLUSIONS

We built three different NLP-ML models (MultiOutpu-
tRegressor + Linear SVR) that can generate lists of
label recommendations for the process step, problem
type, and contributing factors data elements of the
Canadian NSIR-RT incident classification taxonomy for
radiation oncology. On average, these models place the
most appropriate label within the top three label sug-
gestions. The trained models will be used to generate
dropdown menus in our radiation oncology incident
learning system (SaILS) to semi-automate the incident
investigation process.
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