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Abstract
Background: The increase in public medical imaging datasets has raised con-
cerns about potential patient reidentification from head CT scans. However,
existing defacing algorithms, which help protect patient confidentiality, fail to
preserve critical radiotherapy structures, including organs at risk (OARs) and
planning target volumes (PTVs) in head and neck cancer (HNC) patients.
Furthermore, current algorithms do not address the defacing of DICOM-
RT structure set and dose data, which also contain information for facial
surface rendering.
Purpose: To develop and validate a novel automated defacing algorithm that
preserves OARs and PTVs while removing identifiable features from HNC CTs
and DICOM-RT data.
Methods: Eye contours were used as landmarks to automate the removal of
CT pixels above the inferior-most slice of the eye and anterior to the mid-
point of the eye. Pixels within PTVs were retained if they intersected with
the removed region. The body contour and dose map were then reshaped
to reflect the defaced image. We validated our approach on 829 HNC CT-
simulation scans from 622 patients. To evaluate privacy protection, we applied
the FaceNet512 facial recognition algorithm before and after defacing on 3D-
rendered CT scan pairs from 70 patients at two time points. To assess research
utility, we examined the impact of defacing on auto-contouring performance
using LimbusAI and analyzed the locations of PTVs relative to the defaced
regions.
Results: Before defacing, the facial recognition algorithm matched 97% of
patients’ CT scans. After defacing, this rate dropped to just 4%. LimbusAI effec-
tively auto-contoured organs in the defaced CTs, with perfect Dice scores of 1
for OARs below the defaced region, and mean Dice scores exceeding 0.95 for
OARs on the same slices as the defaced region. PTV analysis revealed that
86% of PTVs were entirely below the cropped region, 9.1% were on the same
slice as the crop without overlap,and only 4.9% extended into the cropped area.
All overlapping PTVs were preserved through our algorithm’s design.
Conclusions: We developed a novel defacing algorithm that anonymizes HNC
CT scans and related DICOM-RT data. Our algorithm balances patient privacy
while preserving essential structures for radiotherapy research, facilitating the
sharing of HNC imaging datasets for Big Data and AI.
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1 INTRODUCTION

1.1 Background

In the present era of Big Data and Artificial Intelligence,
there is an increasing demand for publicly accessible
imaging datasets for radiation oncology research.When
publishing datasets, it is crucial to remove any identify-
ing information to protect patient privacy.1 However, this
task becomes particularly complex in the case of head
and neck cancer (HNC) patients, as the body surface
renderings of their 3D image scans could potentially be
used for facial recognition and re-identification.1–3 For
example, Schwarz and colleagues (2022)4 found that
surface renderings of MRI scans could be matched to
a photo of the same patient with 97%–98% accuracy,
while CTs were matched at 78% accuracy using an auto-
mated facial recognition tool. Therefore, to enable more
researchers to contribute without ethical concerns to
public datasets for AI and Big Data applications in HNC,
it is essential that the community has access to robust
de-identification techniques. Defacing, in particular, con-
tributes to data anonymization by obscuring identifiable
facial features in imaging datasets.

1.2 Existing defacing algorithms

While defacing is commonly used to address privacy
concerns, existing defacing algorithms were developed
primarily for neuroimaging research and do not neces-
sarily suit the needs of radiotherapy-related studies.5

More specifically, these tools typically focus on preserv-
ing brain structures but fail to consider other critical
structures, such as the many organs at risk (OARs) and
planning target volumes (PTVs) in the CT-simulation
(CT-sim) and/or cone-beam CT scans of the head and
neck region used for radiotherapy delivery. As a result,
critical structures can become distorted or removed
entirely when conventional defacing techniques are
used. This problem was illustrated by Wahid et al.
(2022),6 showing how four state-of -the-art defacing
algorithms obscure or remove important HNC OARs like
the lymph node levels and salivary glands.

Maintaining the integrity of such structures is cru-
cial for radiotherapy research, which can involve tasks
such as auto-segmentation, radiomics, and tracking of
tumor volumes and anatomical changes.7 For instance,
Sahlsten et al. (2023)5 demonstrated how current
defacing algorithms impede HNC auto-segmentation
research. In their study, they examined eight publicly
available defacing algorithms and found that five were

incapable of defacing CT images, as they were specif-
ically designed for MRI use. The remaining three tools
did deface the images,but caused a significant decline in
performance of their auto-segmentation algorithm when
it was trained and tested on defaced CTs compared to
the original CTs.

As an additional but important consideration in the
radiotherapy domain, conventional defacing algorithms
do not consider the anonymization of DICOM-RT Struc-
ture Set and Dose data that radiotherapy treatment
plans are stored in. These data also contain 3D
anatomical information that can be used for the sur-
face rendering of a patient’s face and so must also
be defaced.

1.3 Our approach

In this work, we aimed to develop an automated defac-
ing algorithm for HNC CT scans that preserves OARs
and PTVs while removing identifiable features like the
eyes,eyebrows,and forehead. It was also important that
our technique extends to defacing DICOM-RT Struc-
ture Set and Dose data to ensure an added layer of
privacy protection for radiotherapy patients in addition
to de-identification. We validated our defacing algorithm
by comparing the performance of facial recognition and
auto-segmentation algorithms before and after defacing,
and by examining the location of HNC tumors relative to
the defaced area.We believe that this work can facilitate
the safe sharing of HNC imaging datasets by providing
a method to anonymize CT images while maintaining
their utility for radiotherapy research. To the best of our
knowledge, this is the first defacing algorithm designed
specifically for HNC radiotherapy data.

2 METHODS

This work was carried out on a retrospective single-
center patient dataset of 622 HNC patients who under-
went radiotherapy treatment between January 1, 2017
and March 31, 2024. In total, the dataset comprised
829 CT-sim scans along with their associated Structure
Sets and Dose maps. The protocol for this retrospec-
tive research study was approved by the Research
Ethics Board (REB) of the McGill University Health
Centre [project number 2025-11285]. All work of the
study was conducted in accordance with the Canada Tri-
Council Policy Statement: Ethical Conduct for Research
Involving Humans (TCPS 2). Additionally, all potentially
identifying fields of the CT and DICOM-RT data were
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TABLE 1 Summary of the needs assessment for our defacing algorithm.

Need Consideration Specific Solution

1) Protect patient privacy Facial recognition algorithms typically rely on facial
landmarks, such as the eyes, eyebrows, forehead,
nose, and mouth.8

Remove facial landmarks used by facial
recognition algorithms.

2) Preserve tumor volumes for HNC
research

HNC predominantly occurs in the oral cavity, larynx,
and pharynx.9

Retain the inferior portion of the head
starting at least at the oral cavity; preserve all
PTV pixels, even if within the proposed
cropped region.

3) Preserve OARs for radiotherapy
research

The OARs near the surface of the face—which are
most susceptible to being removed during
defacing—include: eyes, oral cavity, lips, mandible,
lymph nodes, submandibular and parotid glands.

Retain the inferior portion of the head,
ensuring removal of only those structures
that compromise privacy.

4) Ensure utility for neuroimaging
studies

The brain structure should remain intact in the image. Remove only pixels anterior to the centre of
the eye.

5) Ensure utility for HNC radiotherapy
replanning studies

Replanning often hinges on subtle external changes
such as weight loss and local anatomical changes.

Avoid deformation or removal of the skin
surface around the tumour, chin, and neck.

Abbreviations: HNC, head and neck cancer; OAR, organ at risk.

anonymized by the Eclipse Treatment Planning System
(Varian Medical Systems, Inc. Palo Alto, CA, USA) on
export, thus stripping them of any identifiers such as
names, dates, and so forth.

2.1 Selecting the region to deface

In our study,we aimed to strike a balance between ensur-
ing the anonymity of the images and maintaining their
utility for radiotherapy research. To achieve this, we con-
ducted a needs assessment, summarized in Table 1,
which outlines the key considerations and proposed
solutions that guided the algorithm’s development. The
resulting approach removes the region anterior to the
centre of the eye and superior to the bottom of the eyes,
while preserving anatomical information related to the
PTV, even when located within the defaced area. We
chose to remove pixels rather than add tissue to obscure
them,as additive approaches would retain some original
identifying features that could potentially be recovered.

2.2 Automated defacing workflow

An overview of our automated defacing workflow is pre-
sented in Figure 1. In the first step, the eye contours—as
delineated by the dosimetrists/radiation oncologists—
are extracted from the DICOM-RT Structure Set data of
the CT-sim image.Starting from the inferior-most slice of
the eye structure and moving toward the top of the head,
the algorithm generates a binary mask (values of 0 and
1) that removes all pixels anterior to the center point of
the eye contour from each image slice of the CT-sim.
The algorithm then checks for any PTV or brain struc-
tures that overlap with the initially cropped area, and, if
applicable, modifies the mask to retain the image pix-
els corresponding to the PTV and brain structures to

preserve the target and organ anatomy. The mask is
then applied to the image to remove the defaced pix-
els, and can likewise be applied to any other images
(e.g., daily cone-beam CTs) that have been registered
to the CT-sim.

In the second step, the array of x,y,z-coordinates of
the body contour are updated to reflect the modified
cropped images. Additionally, the eye, lens, and cornea
contours are removed from the Structure Set. The algo-
rithm then checks whether any other contours (aside
from the PTV and brain) protrude into the cropped region
and, if so, reshapes them accordingly.The PTV contours
are kept in the Structure Set, even when they overlap
with the cropped region. Finally, in the third step, the
mask is resized and resampled to the size and spac-
ing of the Dose map contained in the RT Dose file.
The new mask is then applied to the Dose map to
deface it. Once again, in cases where the PTV over-
laps with the cropped region, the mask also retains the
Dose map voxels corresponding to the overlapping PTV
image pixels.

To test our workflow, we ran the automated algorithm
over a HNC dataset of 829 unique HNC CT-sim scans
corresponding to 622 patients. We visually inspected
each defaced CT,Structure Set and Dose map to ensure
proper defacing. Additionally, we calculated the average
running time required to deface one CT and associ-
ated DICOM-RT data to assess computational feasibility.
The defacing code was implemented in Python (version
3.8) and is available in the following GitHub repository:
https://github.com/kildealab/defaceRT.

2.3 Validation - patient privacy

To evaluate privacy protection, we conducted facial
recognition tests on 2D images (screenshots) of 3D
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F IGURE 1 (a) Overview of the automated defacing algorithm’s
workflow. (b) Example of the workflow applied to a patient whose
PTV intrudes into the defaced region. PTV, planning target volume.

renders of the CT scans before and after defacing.
This methodology is consistent with other studies in the
literature investigating facial recognition using CTs.2,3,10

We performed these tests on a randomly selected
subset of 70 patients from our dataset, each of whom
had a second independent CT-sim scan available for
matching (taken for replanning purposes, typically a
week or more after the initial CT). Using two CT scans
taken at different time points is essential for replicat-
ing a real-life facial recognition scenario. It is akin to
comparing two different photos of the same person,

whereas comparing two photos or CTs taken in close
temporal proximity could yield better (and potentially
misleading) matching results.

2.3.1 Image preparation

To obtain images of the 3D rendered faces for facial
recognition, the body contours of the CTs were ren-
dered in 3D in the Eclipse Treatment Planning System
(Varian Medical Systems, Inc. Palo Alto, CA, USA). All
body contours were set to the same white colour and a
2D screenshot was taken of the render facing forward.
This process was repeated to provide three CT scans
for each patient: one at the first time point (CTt1), one
independent scan at the second time point (CTt2), and
one defaced scan corresponding to the first time point
(dCTt1).

2.3.2 Face detection and recognition

Facial recognition algorithms typically comprise three
main steps, which we implemented using the open-
source DeepFace library11 (github.com/serengil/
deepface). First, a detector model locates the face
within an image so that it can be isolated for recogni-
tion. In our case, we tested all facial detection methods
available in DeepFace and opted to use RetinaFace,12

as it successfully detected all 140 faces (70 pairs) in our
non-defaced CT scans. Next, a recognition model trans-
forms these detected faces into vector embeddings. For
this step, we employed the FaceNet512 algorithm,13 as
it has been shown to outperform other existing publicly
available models in facial recognition tasks14,15 and has
been used in other CT imaging defacing studies.16,17

In the final step, a pair of facial embeddings are com-
pared using a distance metric, with closer embeddings
(smaller distances) indicating higher similarity and thus
a greater likelihood that they represent the same per-
son. For this comparison, we used DeepFace’s default
cosine distance metric.

We performed facial recognition tests and obtained
cosine distances for the following three compari-
son pairing groups, each of which is visualized in
Figure 2:

1. Same-patient pairing: comparison between CT
scans of the same patient at two different time points
(CTt1,patient i vs. CTt2,patient i for all i).

2. Different-patient pairing: comparison between CTs
of different patients ((CTt1,patient i vs. CTt1,patient j for
all j = i + 1 to 70) for all i).

3. Defaced-same-patient pairing: comparison
between a defaced CT from the first time point
and the original CT from the second time point of the
same patient (dCTt1,patient i vs. CTt2,patient i for all i).

 24734209, 2025, 12, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.70160 by M

cgill U
niversity H

ealth, W
iley O

nline L
ibrary on [26/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



O’SULLIVAN-STEBEN ET AL. 5 of 11

F IGURE 2 Overview of the three groups of facial recognition
tests performed. Each pair of image comparisons yields one cosine
distance. Note that these images are artist-rendered 3D faces for
visualization purposes. They do not represent the CTs of real
patients. CT, computed tomography.

2.3.3 Baselining exercise

Given that FaceNet512 was originally developed for
2D photographic images and was not explicitly trained
on 2D renderings of 3D images, it was important to
establish a baseline to ensure that the model can ade-
quately distinguish between two CT scans of the same
patient (expected low cosine distances) and two CT
scans of different patients (expected high cosine dis-
tances). Although the aforementioned studies in the
literature16,17 did not undertake this additional step,
we did so to satisfy ourselves that FaceNet512 is an
appropriate algorithm to use for our use case involving
radiotherapy CT-sim scans.

We performed the Mann–Whitney U test to confirm
that the set of cosine distances obtained for the same-
patient pairing group and the different-patient pairing
group were statistically different. Good differentiation
in cosine distances between these two pairing groups
would indicate that the FaceNet512 algorithm is capable
of distinguishing same patients and different patients.

The optimal cosine distance threshold for separat-
ing the two pairing groups was determined by max-
imizing the Youden Index18 using scikit-learn’s ROC
curve implementation,19 which measures the tradeoff
between the true positive rate and false positive rate.
Using this threshold, we determined the number of cor-
rectly matched patients before defacing, as well as the
number of false positive matches when comparing CTs
of different patients.

2.3.4 Defacing evaluation

With the baselining completed, we compared the cosine
distances obtained for the defaced-same-patient pairing
group with the baseline groups of the same-patient and
different-patient pairing groups. We hypothesized that
the defaced images would produce cosine distances
that are consistent with those of the different-patient
pairing group, indicating successful anonymization.
Using the previously defined threshold, we determined
the number of correctly matched patients after defacing.

We conducted a Wilcoxon signed-rank test to deter-
mine if there was a significant difference between
the cosine distances for the same patient before
and after defacing. Finally, we performed the Mann–
Whitney U test to compare the cosine distances of
the defaced-same-patient pairing and different-patient
pairing groups to determine if these two groups are dis-
tinguishable.

A summary of the statistical comparisons and
expected outcomes for both the baselining exercise and
the defacing evaluation are presented in Table 2. For all
statistical tests, a p-value < 0.005 was considered sig-
nificant.

2.4 Utility for radiotherapy research

To assess the utility of our defaced images for radiother-
apy research, we investigated the effects the defacing
had on the two main structure types of interest for
radiotherapy research: OARs and PTVs.

2.4.1 OARs

We used LimbusAI (Limbus AI Inc,Regina,SK,Canada),
the auto-segmentation software used in our clinic, to
automatically generate contours for head and neck

 24734209, 2025, 12, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.70160 by M

cgill U
niversity H

ealth, W
iley O

nline L
ibrary on [26/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 11 O’SULLIVAN-STEBEN ET AL.

TABLE 2 Statistical comparison tests and expected outcomes of cosine distances for the different pairing groups.

Test purpose Cosine distance comparison group Test Name Expected Outcome

Baselining Same-patient pairing (70 pairs) versus Different-patient pairing
(2415 pairs)

Mann-Whittney U Significantly different

Defacing
evaluation

Same-patient pairing (70 pairs) versus Defaced-same-patient
pairing (70 pairs)

Wilcoxon Signed-Rank Significantly different

Different-patient pairing (2415 pairs) versus Defaced-same-patient
pairing (70 pairs)

Mann-Whittney U Indistinguishable

OARs on both the original and defaced CTs of the same
subset of 70 patients. Contouring was performed for
all 46 OARs defined in our clinic’s “Head and Neck”
LimbusAI template.

For each patient, we then calculated the Dice
coefficient20 to measure the degree of overlap between
the contours on the original and defaced CTs for each
OAR contoured. A Dice score of 1 indicates that the two
volumes overlap completely, whereas a Dice score of 0
indicates that they do not overlap at all.The intent of cal-
culating these Dice scores was to allow us to examine
to what extent each OAR and its surrounding tissues
can still be segmented and analysed in radiotherapy
research using the defaced CTs.

2.4.2 PTVs

We analyzed the locations of the PTVs relative to the
removed facial regions in our complete dataset of 622
patients.Specifically,we quantified the fractions of PTVs
that fell into one of three categories: (1) completely
below the cropped region, (2) on the same slices as the
cropped region, but not overlapping it, and (3) overlap-
ping with the cropped region. This assessment provided
insight into the potential impact of the defacing pro-
cess on tumor regions, as PTVs located in or on the
same slice as the removed region may encounter addi-
tional research limitations compared to those completely
below it.

3 RESULTS

3.1 Real-world defacing

Our algorithm was able to automatically deface 793
(96%) of the 829 CTs and associated Structure Sets
and Dose maps in our dataset. The 36 (4%) scans
that were not successfully automatically defaced did not
have eyes contoured, and thus would require an addi-
tional step of either manual or automated contouring
before defacing.To best represent real-world conditions,
we did not undertake the additional contouring step. All
subsequent analyses were thus performed on the 793
automatically defaced CT scans. The code executed

F IGURE 3 3D surface rendering of the reconstructed face of a
head phantom before and after defacing. The head phantom data
were retrieved from the SlicerRtData GitHub repository.21

with a mean runtime of 13 ± 6 s per CT scan (includ-
ing defacing of the Structure Set and Dose map) on a
machine equipped with a virtual Intel Core Processor
(Skylake, IBRS) and 8 GB of RAM. For illustration pur-
poses,Figure 3 shows an example of a public-domain21

3D rendered face before and after defacing.

3.2 Privacy evaluation

Figure 4a presents histograms of the cosine distances
for the three pairing groups tested. The cosine dis-
tances for the same-patient pairing group (CTt1,patient i
vs. CTt2,patient i) were significantly different from the
cosine distances for the different-patient pairing group
(CTt1,patient i vs.CTt1,patient j),with a p-value of p < 0.001.
This significant difference indicates that FaceNet512
can reliably distinguish the renderings of CT scans of
the same patient from CT scans of different patients.
After defacing, we found that the cosine distances of
the defaced-same-patient pairing group (dCTt1,patient i
vs. CTt2,patient i) were significantly different from the
cosine distances of the same-patient pairing group
(CTt1,patient i vs.CTt2,patient i),with a p-value of p < 0.001.
Furthermore, the cosine distances for the defaced-
same-patient pairing group were statistically indistin-
guishable from the cosine distances of different-patient
pairing group (p-value of 0.40).
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F IGURE 4 Results of the FaceNet512 facial recognition algorithm on 70 patients for our three pairing groups. Lower cosine distances
indicate a higher likelihood that two scans are from the same patient. (a) presents histograms of the cosine distances of the three pairing
groups tested. (b) shows the same data presented in whisker plots, with blue lines connecting data for the same patient.

Using the maximized Youden Index, the threshold
cosine distance was determined to be 0.331. Using this
value, the baseline match rate for same-patient pairs
(i.e., before defacing) was 97% (68/70) with a false pos-
itive rate of 11% (258/2415). After defacing, the match
rate decreased to 4% (3/70),which is notably lower than
the false positive rate. Figure 4b illustrates the increase
in cosine distances (i.e., decrease in match likelihood)
between each pair of CTs before and after defacing.

3.3 Evaluation of utility for
radiotherapy research

3.3.1 OARs

The LimbusAI software was able to generate contours
on all of the 70 original and 70 defaced CT scans. A
visualization of the contours before and after defacing
on a sample patient are provided in Figure 5.

The mean Dice scores comparing each of the 46
auto-contoured OARs on the original and defaced CT
scans are presented in Figure 6. As expected, the six
anatomical structures that were partially or completely
removed exhibited low Dice scores, indicating poor over-
lap. Specifically, the lenses and corneas had mean Dice
scores of 0 (SD = 0), while the left and right eyes had
mean Dice scores of 0.5 (SD = 0.1). These results are
consistent with the fact that the corneas and lenses
were entirely removed, and about half of the eyes
were removed.

For the eight anatomical structures located on the
same slice as the cropped region, but not overlapping
it, Dice scores were all close to or equal to 1, indicating
almost perfect overlap. Specifically, the brain, optic chi-
asm, left optic nerve, and right optic nerve had mean
Dice scores of 0.999 (SD = 0.002), 0.95 (SD = 0.05),
0.95 (SD = 0.04), and 0.96 (SD = 0.03), respectively.
The left and right hippocampi, brainstem, and pituitary
all had perfect Dice scores of 1 (SD = 0).

Finally, all of the 32 OARs inferior to the cropped
region were auto-contoured identically in the defaced
and original CTs,yielding perfect Dice scores of 1 (SD =
0).Notably, this includes the 10 lymph node levels,which
are routinely used by radiation oncologists to delineate
clinical target volumes (CTVs).

3.3.2 PTVs

We found that for 86.0% (682/793) of the CT scans
that were successfully defaced, the PTVs were located
entirely inferior to the cropped region, indicating that the
beam entry points were unaffected by the defacing pro-
cess for the majority of patients. 9.1% (72/793) of CTs
had a PTV that was partially on the same slice as the
defaced region, but not overlapping the cropped pixels.
Only 4.9% (39/793) of the CT scans had a PTV that
overlapped with the initial cropped region. These cases
corresponded to patients with diagnoses in the nasal
cavity (22/39), the sinuses (11/39), the palate (3/39), the
cheek (2/39), and the nasopharynx (1/39).
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F IGURE 5 Visualization of LimbusAI’s auto-contoured OARs before and after defacing on a sample patient. Not pictured are the brachial
plexuses, clavicles, cochleas, hippocampi, left lung, submandibular glands, parotid glands, and the following right and left Lymph Node (LN)
levels: Neck, Neck 2347AB, Neck IB, and Neck V. OAR, organ at risk.

4 DISCUSSION

In this study, we developed a novel defacing algorithm
for HNC CT scans and associated DICOM-RT data.
Our algorithm automatically removes identifiable facial
features—namely the eyes, eyebrows, and forehead—
while preserving critical anatomical structures needed
for radiotherapy research. Additionally, our algorithm is
fast and requires minimal computational power. To our
knowledge, this is the first implementation of a defac-
ing algorithm specifically designed for HNC CT data that
also includes the defacing of Structure Sets and Dose
maps, addressing an important privacy vulnerability in
radiotherapy data sharing.

Our defacing algorithm successfully addressed all
identified privacy concerns, with facial recognition rates
(between defaced and non-defaced images) decreas-
ing from 97% to 4% following defacing. These results
align with similar studies, such as Schwarz et al.
(2022)4 and Selfridge et al. (2023),16 who reported

decreases from 78% to 5% and 93% to 7% with their
respective defacing algorithms on CT scans but with-
out radiotherapy considerations. As such, our approach
achieves comparable privacy to existing algorithms,
while offering additional advantages for radiotherapy
research.

A key advantage of our approach is the preser-
vation of OARs essential for radiotherapy research.
Previous studies have demonstrated that conventional
defacing algorithms, which were primarily designed to
preserve only the brain structure for neuroimaging
studies, obscure or remove important HNC structures,
including lymph node levels and salivary glands.5,6

This OAR degradation can have downstream impacts
on research that uses these defaced images. For
instance,Sahlsten et al. (2023)5 found that autosegmen-
tation models trained on original CT scans performed
poorly on defaced images, and models trained on
defaced scans were less effective when tested on the
original data.
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F IGURE 6 Mean Dice scores measuring overlap between auto-contoured OARs on the defaced CTs and the original CTs for 70 patients. A
value of 1 indicates that the contours were identical on the original and defaced CTs. Additional OARs below the cropped region are not shown
in this graph. They include brachial plexuses, clavicles, cochleas, esophagus, hyoid bone, larynx, lips, lungs, neck lymph node levels, parotid
glands, spinal canal, spinal cord, submandibular glands, and thyroid, each of which had perfect Dice scores of 1 (SD = 0). CT, computed
tomography; OAR, organ at risk.

In contrast, our defacing algorithm not only pre-
serves these critical HNC structures by design, but
also maintains sufficient surrounding anatomical con-
text to enable accurate auto-segmentation.Our analysis
revealed that auto-segmentation is virtually unaffected
by defacing—aside from the intentionally removed
structures—with perfect Dice scores of 1.0 for struc-
tures inferior to the cropped area and near-perfect mean
scores (> 0.95) for structures on the same slice as
the crop.

Another advantage of our defacing algorithm is the
systematic preservation of PTV structures. Not only are
all PTV pixels retained in the image, but our evalua-
tion confirmed that the majority of the PTVs (86.0%)
lie entirely below the cropped regions, with only 4.9%
extruding into the defaced area. To our knowledge, no
other study has investigated the impact of defacing
on PTVs, despite their critical value to radiotherapy
research applications. However, given that other defac-
ing algorithms remove or deform important OARs, it
is reasonable to assume that PTVs would similarly be
compromised by them.

While most existing defacing techniques were origi-
nally developed for MRI, a few more recent algorithms
have been proposed specifically for CT scans. For

example, Mahmutoglu et al. (2024)17 and Lindholz
et al. (2025)22 report deep-learning based defacing
algorithms, but both remove a substantial portion of
important HNC OARs around the mouth, resulting in
the same limitation of many of the aforementioned
MRI-focused defacing techniques.

Rather than removing pixels entirely, some
researchers have explored deformation and blurring
methods that attempt to preserve facial resemblance.
Uchida et al. (2023)10 proposed a deformation-based
de-identification method that manipulates head CT
Images according to 400 control points set on the
surface rendering of the patient’s face. This approach
maintains facial resemblance, but the process is man-
ual and thus not feasible for large-scale datasets.
Selfridge et al. (2023)16 proposed a blurring method
that, although automatic, severely deforms the facial
structure. Importantly, both studies only investigated the
effect of defacing on the brain structure,while appearing
to deform many of the OARs near the anterior of the
head. These anatomical distortions can interfere with
radiotherapy applications requiring precise anatomi-
cal measurements, such as adaptive HNC treatment
planning studies that rely on tracking body shrinkage
and skin separation around the lower face and neck.
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By comparison, our pixel-removal approach maintains
clean undeformed anatomical boundaries in the regions
below the defaced region.

Overall, in addressing the limitations of current defac-
ing techniques,our algorithm supports a broad spectrum
of research applications in radiotherapy that rely on
anatomical structural information, such as autosegmen-
tation model development, radiomics analyses,dosimet-
ric studies, anatomical change modeling, tumor volume
tracking, and treatment planning.

Limitations
Our study has several limitations. First, the algorithm

relies on pre-contoured eye structures for radiother-
apy treatment planning, which were absent in about
4% of our dataset. However, given the widespread
availability of auto-contouring tools and the ease of con-
touring the eyes, this limitation can be relatively easily
overcome.

Second, for the small subset of patients (4.9% in our
dataset) with PTVs extending into the defaced region
(primarily those with nasal cavity and sinus tumours),
comprehensive dosimetric studies may be limited since
nearby OARs like the eyes and lenses are of higher
dosimetric importance in these cases. For these cases,
further investigations are required to properly quantify
the dosimetric impact of defacing.

Third, although we demonstrated that FaceNet512
provided a reasonable baseline for facial recognition
using 2D renderings of 3D CT scans, it was not specif-
ically trained to do so. However, to our knowledge, no
other algorithms have been trained in such a context.
As such, we believe that any publicly available algo-
rithm would suffer from the same limitation. Moreover,
while our study focused on facial recognition between
two CT renderings, real-world scenarios may involve
comparisons between a CT rendering and publicly avail-
able photographs, which can be explored in future
work.

Lastly, while our results indicate that our defacing
algorithm substantially minimizes reidentification risks,
there is always an inherent risk in sharing any health-
care data publicly. We also acknowledge the possibility
that new facial recognition algorithms may be created
in the future that are better at recognizing defaced
patients. Furthermore, our defacing algorithm specifi-
cally addresses re-identification via facial renderings
and does not protect against all theoretically possible
re-identification methods. While the risk appears min-
imal, patients could in principle be re-identified using
other 3D anatomical features, such as the shapes and
relative locations of contoured structures, or dental
patterns. We therefore advise that all publicly shared
head CT images—whether defaced or not—be dis-
tributed only via secure imaging archives with signed
user agreements prohibiting the use of these images
for non-research purposes, including 3D rendering for
facial recognition.

5 CONCLUSION

In conclusion,we developed a defacing algorithm specif-
ically for the defacing of HNC CT scans and their related
DICOM-RT data. Our algorithm balances the need for
patient privacy with the preservation of critical OARs
and target structures that are crucial for radiotherapy
research. By enabling the secure de-identification of
imaging data while maintaining their research utility, this
work addresses an important need in the era of Big
Data and AI. Overall, this work can facilitate the shar-
ing of HNC imaging datasets, which in turn can enable
broader collaboration and accelerate advancements in
radiotherapy research.

ACKNOWLEDGMENTS
We gratefully acknowledge Victor Matassa for extract-
ing the HNC patient IDs that met our inclusion criteria
from the clinical database. We also thank Odette Rios-
Ibacache, who, along with K.O., exported the CT-sim
images and DICOM-RT data used in this project. K.O.
acknowledges financial support from the Natural Sci-
ences and Engineering Research Council (NSERC) of
Canada, the Québec Ministère de la Santé et des Ser-
vices Sociaux (MSSS), and the CREATE Responsible
Health and Healthcare Data Science (SDRDS) grant of
NSERC. This work was also supported by the Fonds de
recherche du Québec–Santé dual-chair in AI and digital
health held by J.K. and a research grant from the Rossy
Cancer Network.

CONFL ICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABIL ITY STATEMENT
The data are not publicly available due to privacy or
ethical restrictions.

REFERENCES
1. Parker W, Jaremko JL, Cicero M, et al. Canadian association of

radiologists white paper on de-identification of medical imaging:
part 2, practical considerations. Can Assoc Radiol J. 2021;72:25-
34.

2. Parks CL,Monson KL.Automated facial recognition of computed
tomography-derived facial images: patient privacy implications. J
Digit Imaging. 2017;30:204-214.

3. Mazura JC, Juluru K, Chen JJ, Morgan TA, John M, Siegel EL.
Facial recognition software success rates for the identification of
3d surface reconstructed facial images: implications for patient
privacy and security. J Digit Imaging. 2012;25:347-351.

4. Schwarz CG, Kremers WK, Lowe VJ, et al. Face recognition from
research brain PET: an unexpected PET problem. NeuroImage.
2022;258:119357.

5. Sahlsten J, Wahid KA, Glerean E, et al. Segmentation stability of
human head and neck cancer medical images for radiotherapy
applications under de-identification conditions: Benchmarking
data sharing and artificial intelligence use-cases. Front Oncol.
2023;13:1120392.

6. Wahid KA, Glerean E, Sahlsten J, et al. Artificial intelligence
for radiation oncology applications using public datasets. Semin
Radiat Oncol. 2022;32:400-414.

 24734209, 2025, 12, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.70160 by M

cgill U
niversity H

ealth, W
iley O

nline L
ibrary on [26/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



O’SULLIVAN-STEBEN ET AL. 11 of 11

7. Volpe S, Pepa M, Zaffaroni M, et al. Machine learning for head
and neck cancer: a safe bet?—a clinically oriented system-
atic review for the radiation oncologist. Front Oncol. 2021;11:
772663.

8. Adjabi I, Ouahabi A, Benzaoui A, Taleb-Ahmed A. Past, present,
and future of face recognition: a review. Electronics. 2020;9:
1188.

9. Barsouk A, Aluru JS, Rawla P, Saginala K, Barsouk A. Epidemiol-
ogy, risk factors, and prevention of head and neck squamous cell
carcinoma. Med Sci. 2023;11:42.

10. Uchida T, Kin T, Saito T, et al. De-Identification technique
with facial deformation in head CT Images. Neuroinformatics.
2023;21:575-587.

11. Serengil SI, Ozpinar A. LightFace: A Hybrid Deep Face
Recognition Framework. In 2020 Innovations in Intelligent
Systems and Applications Conference (ASYU) IEEE; 2020:1-
5. Accessed November 19, 2025. https://ieeexplore.ieee.org/
document/9259802

12. Deng J, Guo J, Zhou Y, Yu J, Kotsia I, Zafeiriou S. Reti-
naFace: Single-Stage Dense Face Localisation in the Wild. 2019,
arXiv:1905.00641 [cs].

13. Schroff F, Kalenichenko D, Philbin J. FaceNet: A unified embed-
ding for face recognition and clustering. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR); 2015:815-
823, arXiv:1503.03832 [cs].

14. Firmansyah A, Kusumasari TF, Alam EN. Comparison of Face
Recognition Accuracy of ArcFace,Facenet and Facenet512 Mod-
els on Deepface Framework. In 2023 International Conference
on Computer Science, Information Technology and Engineering
(ICCoSITE); 2023:535-539.

15. Serengil S, Özpinar A. A Benchmark of facial recognition
pipelines and co-usability performances of modules. Bilişim
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