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Abstract

Background: The identification of objective pain biomarkers can contribute to an improved understanding of pain, as well as
its prognosis and better management. Hence, it has the potential to improve the quality of life of patients with cancer. Artificial
intelligence can aid in the extraction of objective pain biomarkers for patients with cancer with bone metastases (BMs).

Objective: This study aimed to develop and evaluate a scalable natural language processing (NLP)– and radiomics-based
machine learning pipeline to differentiate between painless and painful BM lesions in simulation computed tomography (CT)
images using imaging features (biomarkers) extracted from lesion center point–based regions of interest (ROIs).

Methods: Patients treated at our comprehensive cancer center who received palliative radiotherapy for thoracic spine BM
between January 2016 and September 2019 were included in this retrospective study. Physician-reported pain scores were extracted
automatically from radiation oncology consultation notes using an NLP pipeline. BM center points were manually pinpointed
on CT images by radiation oncologists. Nested ROIs with various diameters were automatically delineated around these
expert-identified BM center points, and radiomics features were extracted from each ROI. Synthetic Minority Oversampling
Technique resampling, the Least Absolute Shrinkage And Selection Operator feature selection method, and various machine
learning classifiers were evaluated using precision, recall, F1-score, and area under the receiver operating characteristic curve.

Results: Radiation therapy consultation notes and simulation CT images of 176 patients (mean age 66, SD 14 years; 95 males)
with thoracic spine BM were included in this study. After BM center point identification, 107 radiomics features were extracted
from each spherical ROI using pyradiomics. Data were divided into 70% and 30% training and hold-out test sets, respectively.
In the test set, the accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of our best performing
model (neural network classifier on an ensemble ROI) were 0.82 (132/163), 0.59 (16/27), 0.85 (116/136), and 0.83, respectively.

Conclusions: Our NLP- and radiomics-based machine learning pipeline was successful in differentiating between painful and
painless BM lesions. It is intrinsically scalable by using NLP to extract pain scores from clinical notes and by requiring only
center points to identify BM lesions in CT images.

(JMIR AI 2023;2:e44779) doi: 10.2196/44779
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Introduction

Overview
Most patients with cancer with bone metastasis (BM) experience
pain [1] and most receive radiotherapy to control it [2]. But, it
has been shown that due to the subjective and qualitative nature
of the pain, clinicians often underestimate pain [3]. As a result,
many patients with BM receive radiotherapy after their pain has
already become debilitating [4].

Although patient-reported outcomes can be used to obtain pain
scores directly from patients themselves, the efficacy of these
pain scores is limited due to the fact that these ratings are highly
qualitative and subjective [5]. Because of this, it is desirable to
have pain scoring systems that are more objective. The goal of
this study was to explore ways to automatically and objectively
quantify pain associated with BMs using computed tomography
(CT) images.

We hypothesized that tumor features extracted from CT images
of BMs contain imaging biomarkers that may be used to
objectively identify BM-associated pain. These pain biomarkers
may provide the opportunity to develop objective pain scoring
tools to aid in the diagnosis, treatment, understanding, and
prognosis of BM pain.

Background
The search for imaging and nonimaging pain biomarkers has
been the focus of numerous studies [5-12]. Various studies
[13-21] have shown how artificial intelligence (AI), including
machine learning and radiomics, can be used to understand and
quantify pain. For example, Mashayekhi et al [22] showed that
radiomic features extracted from the CT images of the pancreas
can help to identify functional abdominal pain in patients.
Vedantam et al [23] explored the viability of using radiomics
features extracted from magnetic resonance images to detect
pain following percutaneous cordotomy. At least 1 study [13]
has reported using radiomics to identify painful metastatic
lesions in radiographic images. However, we found no reports
in the literature of a scalable approach that can be used
efficiently on a large set of unlabeled patient data. To the best
of our knowledge, our work is the first to combine natural
language processing (NLP) and radiomics to enable an efficient
and scalable pain identification pipeline using unstructured data.

A fundamental challenge in developing any AI model for use
in medicine is the need to obtain sufficient patient data for
training and testing. For example, the data set used by
Wakabayashi et al in the study that we mentioned earlier [13],
was limited to 69 patients. One limiting factor is obtaining
standard patient-reported pain scores for use as ground-truth
data, and another limiting factor is obtaining segmented images
from which to extract tumor biomarkers. For the work reported
in this paper, we overcame the data set size limitation by using
2 novel strategies. First, by combining NLP with radiomics, we
quickly mined pain scores from clinical notes and used these

NLP-extracted scores to label our radiomics features for
supervised learning. Second, by asking our clinical colleagues
to pinpoint only the center points of BM lesions in radiotherapy
simulation CT images, we maximized the number of lesions
identified in the time available. In the medical field, NLP has
shown promising results in extracting biomedical information
and clinical outcomes such as pain from unstructured text data
[24-26]. Moreover, as we reported previously [21], by
automatically delineating geometrical regions around BM lesion
center points, it is possible to successfully extract radiomics
features for robust BM lesion detection. In this study, we report
how our combined radiomics-NLP machine learning pipeline
can successfully identify pain in radiotherapy simulation CT
images of patients with cancer with BMs.

Methods

Ethical Considerations
This retrospective study was approved by the research ethics
board of the McGill University Health Centre (2020-5899) with
the waiver of informed consent. We confirm that the entire
research was performed in accordance with research ethics
board’s guidelines and regulations.

Data Selection
Our patient-selection process is outlined in Figure 1. The initial
number of 200 pairs of radiation oncology consultation notes
and CT images of patients with spinal BM were included in this
study based on the minimum sample size calculation as
explained in Section A.1 in Multimedia Appendix 1 [27]. In
total, 120 of the notes and all 200 of the CT images from this
study were independently used in 2 studies we previously
reported on [21-25]. The first [25] of these studies showed the
feasibility of extracting pain from consultation notes of patients
with cancer, using NLP. The second [21] demonstrated the
feasibility of using lesion center point–based radiomics models
to differentiate healthy and metastatic bone lesions in CT scans
of patients with BMs. This study combined the data and results
from these 2 prior studies and expanded upon them to build an
NLP- and radiomics-based model to detect pain using the CT
scans of patients.

We searched our institution’s Oncology Information System
for the radiotherapy plans of patients diagnosed with a
“secondary malignant neoplasm of bone” between January 2016
and September 2019. From the retrieved list, we selected those
who were treated for thoracic spinal BM. Then, we retrieved
the corresponding consultation notes and simulation CT images.
A note-image pair was included if (1) the note was in English,
(2) pain was documented, (3) the simulation CT image was
taken up to 10 days post consultation, and (4) simulation CT
revealed BM lesions in the thoracic spine. Patients with multiple
but nonoverlapping note-image pairs were considered
independent samples. We only considered the same patients as
new participants if they had CT scans and associated
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consultation notes for BM lesions in different areas of their
spines. As a result, each BM lesion was included only once in
our study. Also, it should be noted that palliative patients
normally have their simulation CT scan (for treatment planning)
on the same day or within a few days after the consultation, and
radiotherapy is delivered on the same day or within a few days
after treatment planning. To assure that there is no change in
the BM lesion structure or pain status, we did not allow more
than a 10-day gap between the two. Figure A1 in Multimedia

Appendix 1 displays the distribution of the time interval between
the radiotherapy consultation and CT acquisition dates.

We randomly assigned note-image pairs to the training or
cross-validation set (approximately 70%) or the holdout test set
(approximately 30%). We used stratified randomization to
preserve the original sample ratio between pain labels in each
sample set. In addition, we performed a paired t test and a
chi-square analysis [28] to ensure that there was no systematic
bias in any of our sample sets regarding gender, age, or primary
cancer type. Patient demographics are presented in Table 1.

Figure 1. The patient selection criteria used to obtain the radiotherapy consultation notes and simulation computed tomography (CT) images that
formed our training and test data sets. The initial number of 200 note-image pairs included in this study was based on the minimum sample size calculation
as explained in Section A.1 in Multimedia Appendix 1. BM: bone metastases; DICOM: Digital Imaging and Communications in Medicine; RT:
radiotherapy; T-spine: thoracic spine. *Four patients had pairs in both the training and test sets.
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Table 1. Patient demographics in the training and test sets.

P valueaTest set (n=55)Training and validation set (n=121)Characteristics

N/AbGender, n (%)

25 (45)56 (46)Female

30 (55)65 (54)Male

N/AAge (years), mean (SD)c

.9964 (12)63 (14)Female

.7264 (13)67 (14)Male

.06Primary cancer type, n (%)

20 (36)32 (26)Lung

11 (20)23 (19)Breast

5 (9)19 (16)Prostate

6 (11)8 (7)Multiple myeloma

2 (4)7 (6)Renal cell carcinoma

31 (56)64 (53)Other and unknown

.42Bone metastasis lesions, n (%)

76 (47)220 (52)Lytic

57 (35)122 (29)Blastic

30 (18)81 (19)Mix

N/APain label, n (%)

136 (83)357 (84)Pain

27 (17)66 (16)No pain

aP values for numerical values (age) and categorical features (primary cancer site and bone metastasis lesion type) were calculated using a 2-tailed
heteroscedastic t test and a chi-square test, respectively.
bN/A: not applicable.
cThe P value for the age difference between males and females was .20 for the training and validation set and .50 for the test set.

NLP-Extracted Pain Labels
Due to the absence of patient-reported pain scores in our
Oncology Information System, we extracted physician-reported
pain scores from patients' radiation oncology consultation notes
using our previously reported NLP pipeline [25]. While pain
scores were typically reported as part of the “history of the
present illness” in our hospital, for the sake of generalizability,
we extracted pain scores from the entire note.

Our NLP pipeline first processed the text with MetaMap [29]
and mapped it to the UMLS (ie, Unified Medical Language
System) Metathesaurus [30] in order to identify pain
terminologies and their severity scores. Next, it applied rules
to filter out hypothetical, conditional, and historical references
to pain in order to focus solely on references to pain at the time
of the consultation. Then, it calculated the average pain intensity
(API) in each note by averaging the pain scores therein. Finally,
it assigned each note a “verbally declared pain” (VDP) label,
as VDP=“no pain” (if API 0), and VDP=“pain” (if API0). These
pain labels were used to train, validate, and test our radiomics
model.

Expert-Extracted Pain Scores
To evaluate the effect of NLP-extracted pain labels on the
performance of our pipeline, we also generated best-available
ground-truth pain labels using expert-annotated pain scores. To
do so, our radiation oncologists used the texTRACTOR [31]
pain labeling application to manually read consultation notes
and label valid pain scores in our training and test data sets
using a 4-grade verbal rating scale (no pain, mild, moderate,
and severe). A mention of pain was regarded as valid if it
reflected the status of pain at the metastatic sites for which
treatment was planned at the time of the consultation. Table A1
in Multimedia Appendix 1 contains all the NLP- and
expert-extracted pain scores, and Figure A2 in Multimedia
Appendix 1 illustrates the level of agreement between them.
Due to the quality of the documented pain scores and lack of
interrater agreement among experts (Fleiss κ=0.43), as explained
by Naseri et al [25], we subsequently defined a binary pain score
as “no pain” and “pain” in order to establish satisfactory
interrater agreement (κ=0.66) [25]. To create binary ground-truth
pain labels comparable to the NLP-extracted labels, we assigned
notes scored as “no pain” to “no pain” and notes scored as
“mild,” “moderate,” and “severe” pain to “pain.” These
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expert-extracted pain scores were used to measure how well the
NLP pipeline works.

Center Point Identification of BM Lesions
BM lesion center points were identified by a team comprising
a staff radiation oncologist (SS) with 10 years’ experience, a
radiation oncology fellow (MT), and 3 third-year radiation
oncology residents (J Khriguian, PR, and MF). Simulation CT
DICOM (ie, Digital Imaging and Communications in Medicine)
files were exported from the radiotherapy treatment planning
software and deidentified. Then, the CT images were randomly
divided into 5 sets and loaded into the diCOMBINE [32]
application for BM lesion center point identification. Our experts
were blinded to patients’ pain statuses and identities. We
requested each expert to label center points for all visually
identifiable BM lesions in all CT images within 1 of the 5 sets,
and another expert was assigned to validate their labels. A key
benefit of this radiomics pipeline [21] is that it does not require
full lesion segmentation, making it feasible to engage busy
clinicians.

Segmentation of Regions of Interest
Using our previously reported methodology [21], we
automatically segmented lesion center point–based nested

spherical (SP) regions of interest (ROIs). To do this, we first
delineated nested spherical ROIs around the identified BM
lesion center points (see Textbox 1, top panel). ROI diameters
ranged from 7 mm (3×3 voxels) to 50 mm (average size of the
vertebral body) [33]. Then, in addition to what was reported by
Naseri et al [21], we used Hounsfield units thresholding to
exclude fat and air regions from the delineated ROIs. For this,
motivated by Deglint et al [34] and Ulano et al [35], we applied
a threshold to remove voxels with negative Hounsfield units
from our ROIs. Hounsfield units of <0 are associated with fat
and air [34]. We used OpenCV [36] (version 4.4.0) for
Hounsfield units thresholding and applied a Gaussian filter to
reduce noise. Then, we used pynrrd [37] (version 0.4.2) to export
each ROI as a 3D binary mask and store it as a.nrrd [38] file.
Finally, we aggregated these nested ROI masks to form
ensemble ROIs. In this study, we examined 2 contrasting
ensemble (EN) ROIs as shown in Textbox 1 (bottom panel):
one with small size and 3 layers (EN3) and the other with large
size and 6 layers (EN6). Wakabayashi et al [13] and Naseri et
al [21] have shown that radiomics-based machine learning
models trained on ensemble ROIs have better classification
performance than single ROI–based models.

Textbox 1. The characteristics of the spherical and ensemble regions of interest (ROIs) used in this study.

Nested spherical (SP) ROIs with Hounsfield units (HUs) intensity thresholds (HU>0):

• SP7 (diameter 7 mm)

• SP10 (diameter 10 mm)

• SP15 (diameter 15 mm)

• SP20 (diameter 20 mm)

• SP30 (diameter 30 mm)

• SP50 (diameter 50 mm)

Ensemble (EN) ROIs:

• EN3 (ROI SP7+SP10+SP15)

• EN6 (ROI SP7+SP10+SP15+SP20+SP30+SP50)

Radiomics Models
Our radiomics pipeline is illustrated in Figure 2. We essentially
used our previously reported pipeline [21] but with our NLP-
and expert-extracted pain labels to train and test it. We made
one improvement to the pipeline by incorporating
Imbalanced-learn [39] (version 0.7.0) as a resampling step to
account for imbalance (see below).

Radiomics features were extracted from each CT image using
masks composed of the ensemble ROIs listed in Textbox 1.
Then, the feature space was scaled using z score normalization
[40], and the associated NLP-extracted binary pain labels
(pain=1, no pain=0) were incorporated. A single NLP-extracted
pain score was assigned to all the lesions extracted from a given
paired CT image.

Due to the nature of BM pain [41], there was a large imbalance
between the number of painful and painless lesions (493 pain,

93 no pain). Therefore, we used the Synthetic Minority
Oversampling Technique (SMOTE) [42] in the training phase
as it has been shown to be the best-performing resampling
method for radiomics [43]. We did not apply resampling to our
test set in order to maintain the original sample imbalance. Then,
the Least Absolute Shrinkage And Selection Operator [44]
feature selection method was applied to the feature space to
remove noninformative features. Least Absolute Shrinkage And
Selection Operator is a commonly used feature selection method
in radiomics studies [45,46]. Finally, we examined the Gaussian
process regression, linear support vector machine, random forest,
and neural networks classifiers, as they were the best performing
machine learning classifiers in our previous work. We evaluated
the performance of our models on the training set using 5-fold
cross-validation. Final evaluation was performed on the test set.
The receiver operating characteristic (ROC) [47] curve, area
under the ROC curve (AUC), precision, sensitivity, specificity,
and F1-score metrics were used to report the performance of
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our models on the training and test sets. We also trained and
tested our best performing pipeline using the expert-extracted

pain scores (best-available ground-truth) to evaluate the impact
of NLP-extracted pain labels.

Figure 2. The radiomics-based pipeline that we used to select and train a machine learning model to separate painful and painless bone metastasis
lesions. Our pipeline is the same as that published by Naseri et al [21] but using NLP-extracted pain labels and modified to account for sample imbalance.
AUC-ROC: area under the receiver operating characteristic curve-receiver operating characteristic; CT: computed tomography; GPR: Gaussian process
regression; LASSO: Least Absolute Shrinkage And Selection Operator; L-SVM: linear support vector machine; ML: machine learning; NLP: natural
language processing; NNet: neural network; RF: random forest; ROI: region of interest; SMOTE: Synthetic Minority Oversampling Technique.

Results

Patient Demographics
A total of 176 pairs of radiotherapy consultation notes and
simulation CT images of patients with thoracic spinal BM were
included in this study. As summarized in Table 1, a total of 121
sample pairs (mean patient age 63, SD 14 years; males: n=65,
mean age 67, SD 14 years; P=.20) were included for training
and cross-validation, and 55 sample pairs (mean patient age 64,
SD 12 years; males: n=25, mean age 64, SD 13 years; females:
mean age 64, SD 23 years; P=.50) were included in the test set.
The sample selection procedure and data quantities are presented
in Figure 1. The demographics of the patients in the training
and test sets are presented in Table 1. The most common primary

cancer sites were the lungs (n=52), breasts (n=34), and prostate
(n=24).

A total of 586 BM center points were identified by our experts
on the training (n=423 lesions) and test (n=163 lesions) data
sets. In the training set, 357 (84%) lesions were labeled by the
NLP pipeline as painful and 66 lesions were labeled as painless.
In the test set, 136 (83%) lesions were identified by the NLP
pipeline as painful, and 27 lesions were labeled as painless. This
represented a significant but equal imbalance in our training
and test sets.

Segmented ROIs
Examples of segmented ROIs with the Hounsfield units
threshold applied are presented in Figure 3 for painful and
painless BMs.
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Figure 3. Examples of segmented nested spherical regions of interest (ROIs) with the Hounsfield units threshold applied on computed tomography
images of patients with painful (A, B) and painless (C, D) bone metastases lesions. Nested ROIs with diameters of 50, 30, 20, 15, 10, and 7 mm are
shown in the insets as different hues.

Testing Our Radiomics Models
In total, 107 radiomics features were extracted from each of the
6 nested ROIs. Then, they were aggregated to form feature
spaces for the EN3 (with 321 features) and EN6 (with 642
features) ensemble ROIs. Figure 4 shows the ROC curve of
each model in the training (black lines) and test (red squares)
data sets using the EN3 and EN6 ROIs. On the training set, the
gray range represents the mean (SD) AUC of the 5-fold

cross-validation. The AUC and F1-score grids are presented in
Table 2.

The precision, accuracy, sensitivity, specificity, F1-score, and
AUC values of our best-performing pipeline (neural networks
with the EN6 ROI) are presented in Table 3. The performance
of this pipeline (trained and tested) on the data set of
expert-extracted pain labels (best-available ground-truth) is
provided as a quality measurement. The performance of the
model described previously by Wakabayashi et al [13] is also
provided for comparison.
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Figure 4. Receiver operating characteristic curves for our classifiers using 3-layer ensemble (EN3) (top row) and 6-layer ensemble (EN6) (bottom
row) lesion center point–based ensemble regions of interest in training (black lines) and test (dark red squares) data sets. AUC: area under the receiver
operating characteristic curve; GPR: Gaussian process regression; L-SVM: linear support vector machine; NNet: neural network; RF: random forest.

Table 2. The area under the receiver operating characteristic curves (AUCs) and F1-scores of our machine learning classifiers in the training and test
data sets using the ensemble (EN) regions of interest EN3 and EN6 for each of the RF (random forest), GPR (Gaussian process regression), L-SVM
(linear support vector machine), and NNet (neural networks) classifiers.

Test setTraining setRegion of interest

NNetL-SVMGPRRFNNetL-SVMGPRRF

Areas under the receiver operating characteristic curve

73.375.272.167.394.684.798.198.3EN3

82.582.480.674.194.089.898.398.1EN6

F1-scores

63.665.464.760.990.579.489.990.0EN3

69.567.466.963.891.684.793.093.0EN6

Table 3. The performance of our best-performing natural language processing (NLP)–radiomics pipeline (neural networks with the ensemble 6 region
of interest) on the training and test sets using NLP and manually extracted pain labels, together with the results from a prior study by Wakabayashi et
al [13].

AUCaF1-scoreSpecificitySensitivityPrecisionAccuracy

94.091.686.492.493.292.4This study (training set)

82.569.585.359.267.981.0This study (test set)

98.194.489.798.794.894.2This study (training set); using manual pain scores

82.368.085.764.764.983.5This study (test set); using manual pain scores

82.0—86.071.0—b73.9Wakabayashi et al [13] (training test only)

aAUC: area under the receiver operating characteristic curve.
bNot determined.

Discussion

Underestimation and undertreatment of cancer pain can
significantly diminish the quality of life of patients with cancer.

Accordingly, systems that can objectively measure cancer pain
have the potential to improve quality of life. In this study, we
created a scalable NLP-radiomics pain identification pipeline.
Our pipeline is designed for palliative treatment for patients

JMIR AI 2023 | vol. 2 | e44779 | p. 8https://ai.jmir.org/2023/1/e44779
(page number not for citation purposes)

Naseri et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


with cancer undergoing radiotherapy therapy, for whom there
are typically just 2 contemporaneous sources of relevant medical
information at the time of the treatment: consultation notes and
simulation CT images. We used an NLP pipeline to extract
physician-reported pain scores from radiotherapy consultation
notes. NLP-extracted pain scores are appropriate, when
structured patient-reported pain scores are unavailable (as is the
case for at least 25% to 35% of all patients with cancer [13,48]
and for all patients with cancer receiving palliative care who
are treated with radiotherapy at our institution at the time the
data were used in this study). Our lesion center point–based
spherical ROI delineation method significantly sped up the ROI
segmentation procedure, enabling us to rapidly delineate BM
center points in 176 images in this study. For comparison, the
radiomics pipeline that was developed by Wakabayashi et al
[13] required full 3D segmentation of each ROI (69 images).

Due to the unbalanced nature of BM pain, our data set contained
significantly fewer “no pain” samples. In order to better train
our models, we applied SMOTE resampling to the training set
to balance the number of samples with the NLP-extracted “pain”
and “no pain” labels. We did not apply any resampling
techniques to our test (hold out) set to maintain the original
sample imbalance. Therefore, while our training set was
balanced, our test set had 5 times more “pain” cases than “no
pain” cases (136 pain versus 27 no pain cases). This caused a
significant change in the pipeline’s performance between the
training and test sets. It has been shown that oversampling
improves the overall performance of machine learning models,
but the effect is stronger on the training set due to the inclusion
of replicated samples in the cross-validation subsets [49].
Moreover, the imbalance in our test set led to high specificity
(ability to properly identify pain instances) and low sensitivity
(ability to correctly identify no pain cases) in the performance
evaluation. For comparison, the sample imbalance reported by
Wakabayashi et al [13] was 2:1, resulting in a more balanced
relationship between the sensitivity and specificity of their
model.

The performance of our pipeline did not improve much when
we trained and tested it using expert-extracted pain labels
(best-available ground-truth). This might be the case because,
in the first experiment, we both trained and tested our pipeline
using NLP-extracted pain labels, and in the second experiment,
we both trained and tested our pipeline using expert-extracted
pain labels. Consequently, after being trained with one set of
labels (NLP- or expert-extracted), our pipeline performed well
on the test set that was labeled using the same method (NLP or
expert). We also demonstrated that our pipeline’s performance
is comparable to that of Wakabayashi et al [13], who achieved
their results using patient-reported pain labels.

Our pipeline performed significantly better on the EN6 ROIs
than on the EN3 ROIs. This could be the case because in
comparison to EN3, our EN6 ROIs include additional ROIs
with sizes of 20, 30, and 50 mm. From visual inspection, we
suspect that, in addition to the characteristics of the BM lesion
itself, its location (eg, its proximity to the spinal cord) may be
a significant contributor to the BM pain. As a result, larger ROIs
enable our algorithm to extract characteristics from outside the

BM lesion. Wakabayashi et al [13] also demonstrated the
effectiveness of using ROIs outside of the BM lesion.

We are unable to offer a convincing explanation as to why neural
networks outperformed random forest and support vector
machine classifiers in our analysis. Notwithstanding, it has been
demonstrated that neural network classifiers perform better
when applied to more difficult problems and larger data sets,
while random forest and support vector machine classifiers
typically perform well with smaller data sets [46,50,51].

Our pipeline was successful in extracting radiomics biomarkers
capable of distinguishing between painful and painless BM
lesions. These biomarkers potentially provide the opportunity
to objectively identify clinical pain-related indicators that may
aid in the diagnosis, treatment, and understanding of BM pain.

Our work has several limitations. First, we used data from a
single center for this retrospective study. A multicenter study
with a larger data set is necessary to assess the generalizability
of our radiomics pipeline for pain quantification. We anticipate
that the performance of our NLP-radiomics pipeline will vary
based on the pain scoring systems of the cohorts tested. Second,
by using lesion center point–based geometrical ROIs, we ignored
lesion characteristics such as size and shape, which may be
important in the context of pain. Although we used Hounsfield
units intensity thresholding to preserve some tumor information,
we are considering implementing deep learning–based ROI
segmentation in the future as it may better account for full tumor
and surrounding tissue characteristics. Lastly, we used SMOTE
resampling to address the issue of class imbalance. An
alternative solution might be to develop cost-sensitive machine
learning classifiers that account for the cost of misclassifying
minority samples [52]. However, there is no clear consensus in
the literature on whether cost-sensitive learning outperforms
resampling [53]. A model that can differentiate between painful
and painless lesions from medical imaging is a critical
component of any possible radiomics-based pain quantification
pipeline. This work not only shows the feasibility of developing
a pain quantification tool, but also it removes some of the
barriers to its development. As a result, our future work will be
to apply our pipeline to patients’ past and current CT images
and consultation notes in order to develop a longitudinal model
of pain. Such a model should take into account not only images
(taken before, during, and after delivering radiotherapy) but
also other internal and external parameters that can influence
how pain evolves over time (such as primary cancer type,
radiation dose, other treatments, and pain medications). Also,
it will include patient-reported pain scores to provide more
accurate ground-truth pain labels in order to develop a more
robust deep learning–based NLP pipeline [24,54]. This,
however, is beyond the scope of this investigation.

In conclusion, we demonstrated that our NLP and
radiomics-based machine learning pipeline can effectively
differentiate between painful and painless BM lesions in
simulation CT images using ensemble lesion center point–based
geometrical ROIs. Using NLP-extracted pain labels in
conjunction with lesion center point–based radiomics features
is time efficient. This helps to pave the way for the development
of quickly trained and efficient clinical AI-based
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decision-making tools that can objectively measure cancer pain.
Such a tool may help alleviate the burden of pain management

and improve the quality of life of patients with BMs.
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