Predicting Radiotherapy Replanning for Head and Neck Cancer

Kayla O'Sullivan-Steben AQPMC Congrès November 22, 2022

Co-authors: S. Ahlawat, A. Andrade Hernandez, L. Galarneau, J. Khriguian, J. Manalad, J. Kildea

Centre universitaire de santé McGill

McGill University Health Centre

Radiotherapy & Anatomy Changes

Image-Guided Radiotherapy (IGRT)

- Inter- and intra-fractional changes during radiotherapy (bladder filling, patient positioning...)
- In particular, head and neck cancer patients are prone to anatomical changes over the course of radiotherapy

The current problem with replanning

Radiotherapy replanning is resource-intense and decisions are often made at the last minute Workflow disruption and resource burden to the planning team.

- Can affect other patient's timelines
- Continued use of suboptimal plans

U	
Β	

Overall Aim: to predict which patients will need replanning ahead of time.

Work by Aixa Andrade

Weight-related metrics and replanning decisions

Weight loss

 Insufficient for replanning decisions

 Cross sectional neck area from daily CBCTs

Most sensitive around 20 fractions

• Indicator used in clinic:

 \rightarrow target volume (PTV) exits neck

Work by Aixa Andrade

Previous Work

3D Metrics

• Algorithms to extract 3D features

• Rate of change of x_{min} and PTV-Body volume ratio were statistically significant predictors of replanning as of the **10th treatment fraction**

PTV Contour

Work by James Manalad & Srishti Ahlawat

3D Metrics & Machine Learning

Limitation: only 59 patients

Solution: Working on automatic extraction pipeline using Eclipse Scripting API.

Summary of work so far

- Identified x_{min} (minimum distance between PTV and skin)
- Algorithm to extract 3D anatomical metrics predictive of replanning.
- Started looking into machine learning algorithms to predict replanning.

Looking towards the future

What now?

Ultimate decision to replan will likely still be made based on CBCT images.

What if... we could predict what those CBCT images would look like in advance?

Predicting future images

nature machine intelligence

Article | Published: 16 November 2022

Image prediction of disease progression for osteoarthritis by style-based manifold extrapolation

Riemannian Geometry Learning for Disease Progression Modelling

Maxime Louis 🖂, Raphaël Couronné, Igor Koval, Benjamin Charlier & Stanley Durrleman

Conference paper | <u>First Online: 22 May 2019</u> 4543 Accesses | 11 <u>Citations</u>

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11492)

Manifolds for reducing dimensionality

- High dimensional data is difficult to work with, but can have overlapping/redundant features
- Manifolds: the data set lies along a low-dimensional manifold embedded in a high-dimensional space.

Manifolds for reducing dimensionality

- High dimensional data is difficult to work with, but can have overlapping/redundant features
- Manifolds: the data set lies along a low-dimensional manifold embedded in a high-dimensional space.

Autoencoders to learn manifolds

My past project: Autoencoders on X-Ray images

Application to Head and Neck Replanning

Proposed Methodology:

Introduction

- **1.** Train an autoencoder on CBCT images
- 2. Encode past patients' CBCTs into latent space & map their trajectory over treatment

Output

Conclusions

Latent Space Representation

Encoder

Decoder

Application to Head and Neck Replanning

Proposed Methodology:

- 3. Predict trajectories of new patients
- Dynamically update trajectory with new data 4.

Potential Outcomes & Conclusions

- Ability to make replanning decisions ahead of time
 - More easily manage resources and time
 - Lessen burden on planning team

Introduction

• Possibly start re-planning process ahead of time?

Conclusions

Exciting future ahead!!

Previous Work

Future Work

Merci! Thank you!

- Dr. John Kildea
- Head and Neck Project Team
 - Srishti Ahlawat
 - Aixa Andrade
 - Luc Galarneau
 - Julia Khriguian
 - James Manalad
- NICE ROKs Team

https://kildealab.com/

Science des données responsable dans le domaine de la santé

Réseau de cancérologie Rossy Rossy Cancer ₂₀ Network