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RadiOthera py & Anatomy Changes Image-Guide.d Radiotherapy (IGRT)

* In particular, head and neck cancer patients are prone to
anatomical changes over the course of radiotherapy
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The current problem with replanning

Radiotherapy replanning Workflow e Can affect other
is resource-intense and disruption and # patient’s timelines
decisions are often made resource burden to * Continued use of

at the last minute the planning team. suboptimal plans
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Overall Aim: to predict which patients
will need replanning ahead of time.




Work by Aixa Andrade

Weight-related metrics and replanning decisions
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Work by Aixa Andrade
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Work by James Manalad

3D Metrics

* Algorithms to extract 3D features

PTV
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Marching cubes
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Extract 3D features
/ * PTV and Body Volumes

* True (3D) x,in

algorithm

PTV contour points Body contour points

from CT-sim image from CBCT images 3D surface mesh structures

Body contour

* Rate of change of x,,,;,, and PTV-Body volume ratio
were statistically significant predictors of replanning
as of the 10" treatment fraction
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Work by James Manalad

: : . & Srishti Ahlawat
3D Metrics & Machine Learning
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slope

Machine

slope Learning

Clinical characteristics
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Limitation: only 59 patients

Solution: Working on automatic extraction
pipeline using Eclipse Scripting API.
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Summary of work so far

* |[dentified x,,,;;, (minimum distance B2 Cona
between PTV and skin)

* Algorithm to extract 3D anatomical
metrics predictive of replanning.

 Started looking into machine learning
algorithms to predict replanning.
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Looking towards the future

What now?

Ultimate decision to replan will likely still be
made based on CBCT images.

look like in advance?
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Predicting future images

nature machine intelligence Riemannian Geometry Learning for Disease Progression
Modelling
Article | Published: 16 November 2022
. . . . Maxime Louis &, Raphaél Cou €, Igor Koval, Benjamin Charlier & Stanley Durrleman
Image prediction of disease progression for Conference paper | Ficst Online 22 May 2019
osteoarthritis by style-based manifold extrapolation 4543 Accesses | 11 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11492)

Tianyu Han , Jakob Nikolas Kather, Fedd

enazeagen uane eneiec | QU fUtUFE goal: to apply similar methods i
VolkmarSchuIz,Sven Nebelung & Dan . . . w\vl .

" |to predict the progression of patients’ -
CBCT scans over the course of treatment.

Nature Machine Intelligence 4, 1029-1039
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Manifolds for reducing dimensionality

* High dimensional data is difficult to work with, but can have
overlapping/redundant features

* Manifolds: the data set lies along a low-dimensional manifold
embedded in a high-dimensional space.
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Manifolds for reducing dimensionality

* High dimensional data is difficult to work with, but can have
overlapping/redundant features

* Manifolds: the data set lies along a low-dimensional manifold
embedded in a high-dimensional space.
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Image Manifolds

Cat Manifold
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Image Manifolds
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Autoencoders to learn manifolds
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My past project: Autoencoders on X-Ray images

X-Ray
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Dataset
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Proposed Methodology:

1. Train an autoencoder on CBCT images

2. Encode past patients’ CBCTs into latent space & map their B
trajectory over treatment
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Application to Head and Neck Replanning

Proposed Methodology:

3. Predict trajectories of new patients

4. Dynamically update trajectory with new data
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Potential Outcomes & Conclusions

* Ability to make replanning decisions ahead of time
* More easily manage resources and time
* Lessen burden on planning team
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* Possibly start re-planning process ahead of time?
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Exciting future ahead!! w
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Merci! Thank you!

 Dr. John Kildea

* Head and Neck Project Team
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* NICE ROKs Team

https://kildealab.com/

. ) \yllxy
Science des données
responsable dans le C 1

domaine de la santé UNIVERSITY




	Slide 1: Predicting Radiotherapy Replanning for Head and Neck Cancer
	Slide 2: Radiotherapy & Anatomy Changes
	Slide 3: The current problem with replanning
	Slide 4: Weight-related metrics and replanning decisions
	Slide 5: New Metric:  x sub m i. n 
	Slide 6: 3D Metrics
	Slide 7: 3D Metrics & Machine Learning
	Slide 8: Summary of work so far
	Slide 9: Looking towards the future
	Slide 10: Predicting future images
	Slide 11: Manifolds for reducing dimensionality
	Slide 12: Manifolds for reducing dimensionality
	Slide 13: Image Manifolds
	Slide 14: Image Manifolds
	Slide 15: Autoencoders to learn manifolds
	Slide 16: My past project: Autoencoders on X-Ray images
	Slide 17: Application to Head and Neck Replanning
	Slide 18: Application to Head and Neck Replanning
	Slide 19: Potential Outcomes & Conclusions
	Slide 20: Merci! Thank you!

