

INTRODUCTION

- > Dose surface maps (DSMs) are valuable tools to visualize dose to hollow organs.
- > DSMs have been used to identify spatial dose metrics predictive of radiation toxicities in the rectum, bladder, and vagina [1,2,3].
- > However, calculation workflows remain largely in-house with notable methodological differences between research groups.

AIM

To develop an open-source DSM calculation code base capable of reproducing commonly-published DSM calculation and analysis methods.

METHOD

Design Process

A literature review was conducted to identify:

- 1) Dominant DSM calculation methodologies,
- 2) Common calculation frameworks and existing open-source packages,
- 3) Additional functionalities to include to improve user experience.

DSM Calculation Workflow

A modular branching workflow was designed to support the two dominant DSM slicing methods: planar and non-planar (Fig 1). Individual functions were designed with high customizability to allow users to tailor DSM resolution to their research needs.

Analysis Functionalities

The following functions were developed to support common DSM processing and analysis tasks:

- Equivalent dose conversions,
- DSM addition & subtraction
- DSM feature extraction,
- Permutation testing.

Figure 1: Calculation workflow used to create DSMs (both planar and non-planar)

rtdsm: An open-source software for dose-surface map generation and analysis

H. M. PATRICK¹ and J. KILDEA¹

1 Medical Physics Unit, McGill University, Montreal, Canada

Figure 2: Planar (left) and non-planar (centre) DSMs created from the rectums of four patients who underwent 36.25 Gy/5 fr SBRT. Every second slice used to construct the DSMs are shown in red for the planar style and blue for the non-planar (right)

CONCLUSIONS

- > rtdsm is a standalone python software package that provides the essential functionalities required to perform a DSM study
- > The code is available open-source at <u>https://github.com/McGillMedPhys/rtdsm</u> and comes with full documentation and a library of tutorials to make for easy implementation
- rtdsm has the potential to improve the reproducibility of and the access to DSMbased research in medical physics and radiation oncology

Dose Surface Maps (DSMs)

Examples of planar and non-planar DSMs of a rectum created by *rtdsm* are shown in **Figure 2**. Calculation time per DSM is under 8 seconds, making DSM calculation for large datasets feasible.

DSM Conversion and Combinations

rtdsm allows for visualization of inter-cohort dose variations through built-in functions to compute cohort averages and differences. DSMs can also be easily converted to EQD_{2Gv} in order to visualize differences between different fractionation schemes (Fig 3).

Analysis Functionalities

rtdsm supports the two most common DSM analysis approaches used in DSM literature: feature and pixel based. For feature-based analysis, *rtdsm* calculates the nine most common DSM features based on the definitions of Buettner *et al* [1], including cluster area and span (Fig 4). For pixel based analysis, *rtdsm* comes with a built-in implementation of multiple comparison permutation testing (MCP), which allows for direct pixel-to-pixel comparisons between datasets to identify statistically different subregions of dose.

Figure 3: Comparison of rectal dose between a 10 patient prostate SBRT cohort (36.25 Gy/5 fr) and a 10 patient prostate IMRT cohort (60 *Gy/20 fr). The mean DSM of each cohort and their mean difference* map are shown in EQD _{2Gv}. A map of the DSM pixels found to differ significantly between the two cohorts by MCP analysis are also shown.

REFERENCES

- 1) Buettner F, Gulliford SL, Webb S, Partridge M. Using dose-surface maps to predict radiation-induced rectal bleeding: a neural network approach. Phys Med Biol. 2009;54(17):5139-5153.
- 2) Palorini F, Cozzarini C, Gianolini S, et al. First application of a pixel-wise analysis on bladder dose-surface maps in prostate cancer radiotherapy. Radiother Oncol. 2016;119(1):123-128.
- 3) Serban M, de Leeuw AAC, Tanderup K, Jürgenliemk-Schulz IM. Vaginal dose-surface maps in cervical cancer brachytherapy: Methodology and preliminary results on correlation with morbidity. Brachytherapy. 2021;20(3):565-575.

Figure 4: (a) Visualization of the dose cluster based features derived from DSMs. (bd) Boxplot distributions of the DSM cluster features for the SBRT and IMRT cohorts across multiple dose levels.

DSM Cluster Feature Visualization

ACKNOWLEDGEMENTS

Funding for this work was provided by the Fonds de Recherche du Québec - Santé and the CREATE grant in Responsible Health and Healthcare Data Science from NSERC (sdrds.org).

CONTACT INFORMATION

haley.patrick@mail.mcgill.ca