Monte Carlo modeling to investigate the suitability of using singlecell DNA sequencing of irradiated cells in the mutation signature analysis of low- and high-LET radiation McGill Centre universitaire **McGill University**

Felix Mathew^{1*}, James Manalad¹ and John Kildea¹

¹Medical Physics Unit, McGill University, Montreal, QC, H4A 3J1, Canada

BACKGROUND

• Research work by Behjati et al. (2016) [1] has shown that radiotherapy-associated second cancers exhibit mutation signatures (MS) that are specific to ionizing radiation.

de santé McGill

Institut de recherche

Health Centre

Research Institute

- We predict distinct MS for low- and high-LET radiations.
- But stratifying radiotherapy-associated cancers by LET is an arduous task.
- We hypothesize that cells irradiated in vitro can serve as an alternative to tumor cells to identify radiation-induced MS when performing DNA sequencing at the single-cell level.

OBJECTIVE

To perform Monte Carlo modeling to investigate if low- and high-LET radiation introduce DNA damage patterns in cells' genomes that may be distinguishable at the single-cell level.

METHODS

Our single-cell geometric nuclear DNA model [2] (Fig 1), developed using the TOPAS-nBio toolkit [3], was exposed to low-LET photons and high-LET neutrons of various

CONCLUSION

Our simulations show that the DNA damage induced by low- and high-LET radiations

should be distinguishable in a cell population using single-cell sequencing.

ACKNOLEDGMENTS CSA ASC Medical Physics Montgomery et al. Centre universitaire de santé McGill Health Centre

Various types of DNA damage were scored with repeated simulations (Fig 2).

(a) Undamaged DNA double helix	(b) Single strand break	(c) Base lesion
6666666666666666		666666666666666
<u> </u>	<u> </u>	<u> </u>
(d) Simple double strand break	(e) Complex DSB cluster	(f) Non-DSB cluster
(d) Simple double strand break	(e) Complex DSB cluster	(f) Non-DSB cluster

REFERENCES

1. Behjati, Sam, et al. "Mutational signatures of ionizing radiation in second malignancies." Nature communications 7.1 (2016): 1-8.. DOI:

10.1038/ncomms12605

2. Montgomery, Logan, et al. "TOPAS Clustered DNA Damage GitHub repository" (2021). DOI: 10.5281/zenodo.5090104

3. Schuemann, J., et al. "TOPAS-nBio: an extension to the TOPAS simulation toolkit for cellular and sub-cellular radiobiology." Radiation research 191.2 (2019): 125-138. DOI: 10.1667/RR15226.1

Figure 2: Schematic examples of the types of DNA damage considered in our simulations. (a) An undamaged DNA double helix wherein each square represents a nitrogenous base attached to the sugar-phosphate backbone. (b) A single strand break (SSB) depicted as a red separation in the backbone. (c) A generic base lesion depicted as a red base. (d) A double strand break (DSB) containing two SSBs on opposing strands within 10 base pairs of each other. (e) A complex DSB cluster containing two or more damage sites, including at least one DSB, each within 40 base pairs of each other. (f) A non-DSB cluster containing two or more SSBs or base lesions, each within 40 base pairs of each [4].

4. Montgomery, Logan, et al. "Towards the characterization of neutron carcinogenesis through direct action simulations of clustered DNA damage." Physics in Medicine & Biology 66.20 (2021): 205011. DOI: 10.1088/1361-6560/ac2998

CONTACT INFORMATION

Felix.Mathew@mail.mcgill.ca

NSERC CRSNG