On the simulation of neutron-induced indirect DNA damage using TOPAS-nBio to estimate neutron relative biological effectiveness

James Manalad¹, Logan Montgomery², John Kildea^{1,2,3}

¹McGill University Medical Physics Unit, ²McGill University Dept. of Physics, ³Gerald Bronfman Dept. of Oncology

Introduction

- Photoneutrons of varying energies are liberated during high-energy photon EBRT.
- Photoneutrons contribute to the whole-body radiation dose and pose a carcinogenic risk.
- Recent work has shown that DNA strand breaks (SBs) due to indirect action occur up to three times more often than SBs due to direct action⁽¹⁾.

Objectives

- Develop and validate a pipeline to simulate and score indirect action in a DNA model.
- Use this pipeline to quantify the risk of neutron-induced mutagenesis related to indirect action by estimating neutron RBE as a function of energy.

Methods

- TOPAS framework and the low-energy TOPASnBio extension were used to simulate physical and chemical interactions.
- DNA model from a parallel study on neutroninduced direct clustered DNA damage⁽²⁾ was used.
- [Step 1] Code implementation of indirect action.
- [Step 2] Benchmarking of the model with published results by comparing SB yields of monoenergetic protons (<u>similar simulation</u> parameters but <u>different DNA models</u>).
- [Step 3] Estimation of neutron RBE by comparing indirect SB yields of monoenergetic neutrons (1eV to 10 MeV) and 250 keV reference X-rays.

DNA Model

Fig 1. Components of the DNA model⁽²⁾ with 6.33 Gbp.

Results – [Step 1]

- Implemented features in our code for indirect action simulations:
 - Only interactions between OH· and DNA backbone volumes were considered to lead to SBs with a 40% probability, as used by Zhu *et al*.⁽¹⁾.
 - Molecules were not allowed to be generated inside DNA and histone volumes.
 - Histones are scavengers of OH·, e-aq, and H· species.
- · Other features:
 - Parameters related to indirect action can be easily modified by the user via the TOPAS parameter file.
 - Compatible with scoring direct action, including recording hybrid damage.

Results – [Step 2]

Fig 2. Comparison of damage yields by monoenergetic protons in our work (markers) versus published data⁽¹⁾ (broken lines).

Discussion

- SSB and DSB yields are on the expected order of magnitude.
- Discrepancies are consistent with what we expect from differences in DNA models.
- [Step 3] We are currently running simulations to expose our DNA model to monoenergetic neutrons and 250 keV X-rays to compare clustered DNA damage yields.

Conclusions & Ongoing Work

- A validated implementation of indirect action has been developed.
- It is currently being used to collect necessary data to produce neutron RBE curves for indirect action that can be compared with our existing RBE curves for direct action.

Acknowledgements

Agence spatiale canadienne

References

- 1) Zhu H. et al. 2020 Cellular response to proton irradiation: a simulation study with TOPAS-nBio
- Montgomery L. et al. 2021 Modeling the carcinogenic effects of neutron radiation by simulating clustered DNA damage using TOPAS-nBio (YIS talk)