A simulation CT-based radiomics model for
detecting metastatic spinal bone lesions.
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Bone Is one of the most common ° KR -lﬂ--ﬂm
sites for cancer to metastasize 10. N B — | Eununnhak

Early diagnosis and treatment of B =.
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bone metastases (BM) can help B &= -
improve the quality of life of cancer - ;
patients and treatment outcomes. SR T @
Radiotherapy treatment planning for |

BM Is often based on a patient’s

simulation-CT scans alone without
using diagnostic CT or PET images.
However, accurate detection of
metastases Is difficult when using a

simulation-CT alone.
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Figure 3: The AUC grid for different combinations of ML classifiers and RS techniques.

L-SVM; linear support vector classifier, SVM; SVM with Radial-basis function kernel, NB; Gaussian
Naive Bayes, KNN; K-Nearest Neighbors, QDA; Quadratic Discriminant Analysis, GPR; Gaussian
Process Regression, DT; Decision Tree, RF; Random Forest, Bagging, AdaBoost, Nnet; Neural
network with stochastic gradient-based solver, and NNet-LBFGS ; NNet with Limited-memory Broyden—
Fletcher—Goldfarb—Shanno solver.
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Figure 1. Examples of BM centers that were delineated using our diCOMBINE S

3D lesion segmentation web app. FastICA 2 -
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ODbjective

The objective of this study Is to
iInvestigate the feasibility of building
a simulation CT-based radiomics
model to identify spinal BM.
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patients with non-metastatic lung
cancer and 189 patients with spinal
BM from our Institution's radiation
oncology Information system were
used under an REB-approved
study.

The location of 631 BM lesions and
674 healthy bone regions were
identifled by experts using our In-
house 3D lesion segmentation web
application (diCOMBINE).

[ J q "MACHINE ‘ PERFORMANCE Figure 4: The AUC grid for different combinations of ML classifiers and FS methods.
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Figure 2: Our Radiomics pipeline for classifying metastatic and healthy spinal

bones.
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various geometric shapes (spherical
and cylindrical-along-z-axis) were
delineated on the images and 107
radiomic features were extracted.
The data were divided Iinto 70%
training and 30% testing sets.
Different resampling (RS)
techniques, feature selection (FS)
methods, and machine learning
classifiers were evaluated using the
area under the recelver operating
characteristic curve (AUC) for
obtaining optimal prognosis models.
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Figure 5: The AUC grid for different combinations of ML classifiers and ROIs with
different sizes and with TREE as FS method and SMOTE as RS technigues.
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Table 1: Segmentation of ROI from CT images performed using cylindrical and
spherical ROI with various sizes around the expert extracted lesion centers.

Discussion & Conclusions

Among machine learning classifiers, Gaussian process
regression (GPR), neural network (NNet), and random
forest (RF) classifiers achieved higher prognosis
performance. AUC, precision and recall of our best
performing model were 0.86, 0.81, and 0.81,
respectively. Our lesion-center-based radiomics model
was successful In identifying spinal BM lesions In
simulation-CT images.
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